TRAFFIC IMPACT ANALYSIS

Project:

The HillIn Dallas, Texas

Prepared for:

City of Dallas

On behalf of:

Asana Partners

Prepared by:

Steve E. Stoner, P.E., PTOE

Stere E. Stones

7557 Rambler Road, Suite 1400
Dallas, Texas 75231-2388
(972) 235-3031 www.pkce.com
TX.REG: ENGINEERING FIRM F-469
TX. REG. SURVEYING FIRM LS-100080-00

EXECUTIVE SUMMARY

The services of **Pacheco Koch** were retained by **Asana Partners** to prepare a Traffic Impact Analysis (TIA) for new development at the existing mixed-use property known as *The Hill* (the "Project") located at 8041 Walnut Hill Lane and 9310 N Central Expressway in Dallas, Texas. The Project proposes to increase existing office use and add a new multifamily use to the existing site. For purposes of this study, buildout of the Project is estimated to occur by 2025. A TIA is required by the City of Dallas for review as part of the Owner's request for a zoning change of the subject properties.

The purpose of this report is to estimate the incremental impact on the background traffic operational conditions caused by the proposed development within a specific study area as determined by standardized engineering analyses. The study parameters used in this TIA are based upon the requirements of City and are consistent with the standard industry practices used in similar studies.

Based upon the analyses performed herein, Pacheco Koch developed the following findings and recommendations.

FINDING: The Hill is an existing mixed-use development containing office and commercial uses located adjacent to the DART Walnut Hill Light Rail Station. The proposed Project includes a significant expansion of the office component on site and addition of a multifamily component. The commercial component of the project will largely remain intact although total floor area will decrease very slightly. Overall traffic volume generated by the site will increase by approximately 4,500 vehicular trip ends per day and 450 trip ends during peak hours.

FINDING: The site provides multiple driveways on Walnut Hill Lane and on the North Central Expressway. The main driveway on Walnut Hill Lane is controlled by a traffic signal, which operates at good Levels of Service during peak hour periods. The analysis of the additional traffic generated by the development indicate that, while average delays will increase slightly, the Levels of Service at the traffic-signal-controlled intersection will remain the same. For the traffic operations at the unsignalized intersections, average delays will also increase as a result of increased volumes; however, the effects on traffic maneuvers within the public right-of-way are not significant.

- * RECOMMENDATION: In order to encourage and facilitate use of existing transit services, improvements to the pedestrian environment along Manderville Lane are recommended. Such as:
 - a. Improve pedestrian corridors within the site and connections to the sidewalk.

b. Replace all existing pavement markings on Manderville Lane at the intersections with Walnut Hill Lane and Glen Lakes Drive.

END

DEVELOPMENT PLAN DETAILS:

KEY PLAN:

PARCEL C SIZE 136,136 SF PARCEL E SIZE 9,487 LEASABLE AREA (SUM) 145,623 SF EXCLUDING HOUNDSTOOTH COFFEE (PARCEL A) ADDITIONAL NEW RETAIL AREA 7,500 OFFICE (PARCEL B) PARCEL AREA 152,670 SF NEW OFFICE AREA 255,000 SF NEW RETAIL AREA 15,000 SF EXISTING OFFICE/RETAIL AREA 55,000 SF 180 FT WITH RETAIL HEIGHT 135 FT STORIES STORIES TBD **PARKING OFFICE (255,000sf)** RETAIL (15,000sf)

SAOSTALI GARAGE

MULTIFAMILY (385 UNITS)

RETAIL (10,000sf)

RETAIL (7,500sf)

EXISTING BLDGS

11 & 12

EXISTING

BLDG 3

WALNUT HILL LN

EXISTING

BLDG 1

44'-11"

EXISTING

BLDG 4

EXISTING

BLDG 2

730 STALLS (TOTAL SURFACE)

EXISTING

BLDG 5

EXISTING

BLDG 6

EXISTING

BLDG 7

EXISTING BLDG 10

EXISTING BLDGS 8 & 9

Perkins&Will

2218 Bryan St, Suite 200 Dallas, TX 75201 t 214.283.8700 f 214.283.8701 perkinswill.com

VICINITY MAP

THE HILL DEVELOPMENT PLAN

February 21, 2022

TRAFFIC IMPACT ANALYSIS The Hill

Dallas, Texas

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
SITE LOCATION MAP	iii
PRELIMINARY SITE PLAN	iv
INTRODUCTION	1
Purpose	1
Project Description	2
Study Parameters	3
Study Area	3
TRAFFIC IMPACT ANALYSIS	4
Approach	
Background Traffic Volume Data	4
Existing Volumes	4
Projected Background Traffic Volumes	4
Site-Related Traffic	
Trip Generation and Mode Split	5
Trip Distribution and Assignment	
Site-Generated Traffic Volumes	6
Traffic Operational Analysis — Roadway Links	
Description	6
Summary of Results	
Traffic Operational Analysis — Roadway Intersections	
Description	
Analysis Traffic Volumes	
Summary of Results	10
SITE ACCESS EVALUATION	10
SUMMARY OF FINDINGS AND RECOMMENDATIONS	13

LIST OF TABLES:

- Table 1. Development Program Summary
- Table 2. Historical Daily Traffic Volume Data
- Table 3. Projected Trip Generation Summary
- Table 4. Roadway Link Capacity Analysis Results Summary
- Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)
- Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)
- Table 7. Site Access Evaluation

LIST OF EXHIBITS:

Exhibit 1. Site Location and Study Area Map

LIST OF APPENDICES:

APPENDIX A. Traffic Volumes Exhibits

APPENDIX B. Detailed Traffic Volume Data

APPENDIX C. Site-Generated Traffic Supplement

APPENDIX D. Detailed Intersection Capacity Analysis Results

APPENDIX E. Site Access Evaluation Supplement

INTRODUCTION

The services of **Pacheco Koch** (PK) were retained by **Asana Partners** to prepare a Traffic Impact Analysis for proposed new development within the existing mixed-use property known as "The Hill" located at 8041 Walnut Hill Lane and 9310 N Central Expressway in Dallas, Texas. A preliminary site plan for the Project, provided by **Asana Partners**, and a site location map (**Exhibit 1**) are provided following the **EXECUTIVE SUMMARY** section of this report.

In order to facilitate development of the Project, Asana Partners (the "Applicant") has made a request to the **City of Dallas** (the "Approving Agency") for a zoning change of the subject properties. The Applicant is being represented by **Winstead** in the zoning process. As part of application process for this request, submittal of a TIA commissioned by the Applicant must be submitted to the Approving Agency for review.

This TIA was prepared by traffic engineers at Pacheco Koch (the "Engineer") in accordance with industry and local standards. Pacheco Koch is a licensed engineering firm, based in Texas, that provides professional engineering and related services.

Purpose

A Traffic Impact Analysis (TIA) is an engineering study used to provide information on the projected off-site impacts produced by a specific Project on the traffic operations of public traffic facilities. In some instances, those Project impacts can be sufficiently accommodated by the existing roadway network; while in other cases, Project impacts may require mitigation. Determination of mitigation requirements is subject to the standards and expectations of the Approving Agency.

Commissioning a TIA may be required by an Approving Agency when an Applicant is seeking approvals or entitlements for the Project. Using standardized analysis methodologies, the findings of the TIA are used to gage the direct impacts on the transportation system that are attributable to the Project. Under certain circumstances and within legal parameters, the Approving Agency may require the Applicant to fund the improvement(s) needed to mitigate the impacts.

A TIA should be prepared by a licensed Engineer skilled in the principles of traffic and transportation engineering and planning. The general methodologies, processes, and guidelines used in a TIA are established by industry standards—which are maintained by organizations such as the Institute of Transportation Engineers (ITE) and others—although, the project-specific parameters of the study (e.g., study locations, analysis scenarios, analytical assumptions, etc.) may be established by local ordinances or technical staff of the Approving Agency.

Generally, existing and background conditions of the transportation system are assumed to be the responsibility of the respective governing agency(-ies).

Although the explicit purpose of a TIA is not to evaluate those conditions and identify deficiencies, this information may be evident from the study's findings. The Engineer may suggest or recommend modifications to the transportation system that, in the Engineer's opinion, could improve overall traffic operations, safety, site access, circulation, etc. However, such proposals may be unrelated to the traffic impacts of the Project and are not considered to be the responsibility of the Developer. Implementation of such modifications are subject to the discretion and approval of the respective agency. In general all proposals from the Engineer should not be considered mandatory and are not intended to assign or imply funding responsibility.

A TIA is not a detailed site plan review nor a substitute for local or regional transportation planning.

Project Description

The Hill is an existing mixed-use property developed in the 1980's. The Project contains office, retail, restaurant, and other commercial uses. Portions of the property were previously rezoned in anticipation of adding new medical office use, but the redevelopment did not happen.

Today, the Owners are seeking to expand the office portion of the Project and add a new multifamily component. Commercial uses (retail, restaurant, personal service, etc.) will have a slight net reduction in floor area. For purposes of this study, completion of the new development is estimated to occur by 2025. A summary of the proposed development program, by phase, is provided in **Table 1**.

USE	EXISTING AMOUNT	FUTURE AMOUNT
Multifamily	-0-	415 DU
Office	70,776 SF	268,226 SF (197,450 SF net increase)
Commercial (includes, retail, restaurant, personal service, and similar uses)	168,382 SF	164,897 SF (3,485 SF net decrease)

Table 1. Development Program Summary

NOTE: The development program provided above is based upon the most current and complete information available at the time of this study publication.

Existing property access is provided on Walnut Hill Lane and the Northbound Frontage Road of North Central Expressway. Existing access will remain.

The subject property is approximately 19.23 acres and is currently zoned a mix of Regional Retail (RR), Mixed Use (MU-1), and Planned Development District Number 804 (PD 804).

Study Parameters

The study parameters used in this TIA are based upon industry standard practices and requirements of the City of Dallas.

This TIA analyzed the day-to-day traffic operations on the public roadway system at time periods that have the greatest combined volume of the background traffic and site-related traffic. Due to the predominant influence of background traffic, the weekday AM and PM peak hours of adjacent street traffic are typically analyzed.

The analysis scenarios addressed in this study include the following:

- at existing conditions ("Existing" scenario)
- at site buildout year without site-generated traffic ("Background" scenario)
- at site buildout year with site-generated traffic ("Buildout" scenario)
- at five years after site buildout without site-generated traffic
- at five years after site buildout with site-generated traffic ("Horizon" scenario)

NOTE: Analyses of all future conditions scenarios utilize projected traffic volumes derived by Pacheco Koch using reasonable and customary assumptions that are based upon existing conditions where possible. ITE appropriately points out that, due to natural changes in traffic patterns that occur over time, the margin of error for projected traffic volumes increases as the length of time of the projection increases; and, any projection of hourly turning movement volumes beyond five years inherently contain significant assumptions.

Study Area

The study area for a TIA is typically defined to allow an assessment of the most relevant traffic impacts to the local area. The extent of the study area is discretionary but is generally commensurate with the scale of the proposed development. Special localized factors may also be considered. The specific locations included in the study area of this TIA are listed below and depicted in **Exhibit 1**.

Intersections:

- (a) US 75 Northbound (NB) Frontage Road (FR) and Glen Lakes Drive
- (b) US 75 Northbound (NB) Frontage Road (FR) and Site Driveways (2)
- (c) Manderville Lane and Glen Lakes Drive
- (d) Walnut Hill Lane and Manderville Lane
- (e) Walnut Hill Lane and Site Driveways (2—one signalized, one unsignalized)

Roadway Links:

- (A) Walnut Hill Lane east of US 75
 - Existing operation and cross-section: six lanes, two-way operation, median-divided
 - City of Dallas Thoroughfare Plan Designation: Principal Arterial, M-6-D(A)

- □ Current Daily Traffic Volume: 38,404 (Wednesday, November 3, 2021)
- □ Posted Speed Limit: 35 MPH
- (B) Walnut Hill Lane east of US 75
 - Existing operation and cross-section: varies, one-way operation
 - □ City of Dallas Thoroughfare Plan Designation: frontage road
 - Current Daily Traffic Volume: 29,482 (Wednesday, November 3, 2021)
 - □ Posted Speed Limit: 40 MPH

TRAFFIC IMPACT ANALYSIS

The following is a description of the analyses performed as part of this Traffic Impact Analysis.

Approach

The TIA presented in this report analyzed the operational conditions of the study area intersections for the relevant peak hours using standardized analytical methodologies, where applicable. Actual traffic volumes (with adjustments described previously) represent background traffic conditions with no site-related traffic included. Then, traffic generated by the proposed development was calculated using the industry-standard four-step approach of trip generation, mode split, trip distribution, and traffic assignment. By adding the site-generated traffic to the background traffic, the resulting site-plus-background operational conditions were re-analyzed in order to measure the "impact" created by the Project. For any scenario, where appropriate, the Engineer considered and may recommend measures to mitigate undue operational conditions. Recommendations may be unrelated to impact of the Project. However, any recommendations provided by the Engineer are for the consideration of the Approving Agency who may or may not accept the recommendations. Recommendations provided by the Engineer are not intended to assign or imply a mandate nor financial responsibility as such decisions are for the Approving Agency and Applicant to resolve.

Background Traffic Volume Data

Existing Volumes

Current traffic volumes were collected during the analysis periods at the study area intersections on Wednesday, November 3, 2021. Traffic volumes are graphically summarized in APPENDIX A; detailed data sheets are provided in APPENDIX B.

Projected Background Traffic Volumes

Background traffic growth is defined as the normal growth of traffic that is not directly related to the subject development of this study. A review of historical traffic volume data can provide an indication of the local traffic growth patterns.

Table 2 provides a comparison of prior traffic volumes from institutional sources in the vicinity of the subject site, from which PK calculated an annual growth rate.

Table 2. Historical Daily Traffic Volume Data

ROADWAY SEGMENT	HISTORICAL DAILY VOLUME (DATE)	ANNUAL GROWTH RATE		
Walnut Hill Lane, east of US 75	44,101 ('19) ^A 39,758 ('14) ^A	2.10%		

Data Source: A = TxDOT Traffic Count Database System

According to these data, traffic volumes in the vicinity of the subject site are generally increasing. For purposes of this analysis, Pacheco Koch assumed a growth rate of two percent (2.0%) per year for purposes of this study in order to estimate future background traffic volumes.

By applying the assumed growth rate(s) described previously, future background traffic volumes at the Project buildout year were calculated for the study area intersections. These volumes are graphically summarized in APPENDIX A.

Site-Related Traffic

Trip Generation and Mode Split

Trip generation is calculated in terms of "trip ends" – a trip end is a one-way vehicular trip entering or exiting a site driveway (i.e., a single vehicle entering and exiting a site represents two trip ends). Trip generation for this Project was calculated using the Institute of Transportation Engineers (ITE) Trip Generation manual (11th Edition). ITE Trip Generation is a compilation of actual, vehicular traffic volume generation data and statistics by land use as collected over several decades by creditable sources across the country. Using the ITE equations and rates is an accepted methodology to calculate the projected site-generated traffic volumes for many land uses (though engineering judgment is strongly advised).

The base trip generation data from ITE generally reflect average conditions for a standalone use on a typical day. However, in some cases, the Engineer may judge that other factors may be of sufficient significance to warrant adjusting the base ITE calculations in order to more accurately reflect Project-specific conditions. For this analysis no adjustments to the base ITE data were applied; however internal trip capture could be applied.

"Mode split" refers to the consideration of all modes of transportation. Typically, the majority of trips occur by passenger vehicles such as personal autos and ridesharing services. But, some alternative modes—such as travel by public transit, bicycle, and walking—do not generate additional vehicle trips. The default trip generation data from ITE is summarized in vehicular trip ends and incorporate "typical" mode split characteristics. However, when travel by alternative mode has the potential to be greater than normal, a reduction in the number of vehicular trip volume may be warranted. For this analysis a five percent (5%) reduction was applied to the base ITE data to account for transit mode split due to the close

proximity of and convenient access to the DART Walnut Hill Light Rail station (located across Manderville Lane from the subject site).

Table 3 provides a summary of the calculated net increase in trip ends generated by the project. Supplemental information used in the trip generation calculations is provided in APPENDIX C.

SCENARIO	DAILY TRIP ENDS	AM PEAK HOUR TRIP ENDS (ADJACENT STREET PEAK)	PM PEAK HOUR TRIP ENDS (ADJACENT STREET PEAK)
	(WEEKDAY)	Total (In/Out)	Total (In/Out)
Multifamily (415 DU)	2,094	139 (36/103)	169 (103/66)
General Office (200,000 SF net increase)	2,630	313 (269/44)	311 (50/261)
Subtotal	4,724	452 (305/147)	480 (153/327)
Net Increase*	4,488	429 (290/139)	456 (145/311)

Table 3. Projected Trip Generation Summary (New Uses Only)

Trip Distribution and Assignment

The distribution and assignment of site-generated trip ends to the surrounding roadway system is determined by proportionally estimating the orientation of travel via various travel routes. This is a subjective exercise based upon professional judgment considering such factors as directional characteristics of existing local traffic, trip attributes (e.g., trip purpose, trip length, travel time, etc.), roadway features (e.g., capacity, operational conditions, character of environment), regional demographics, etc.

Traffic for the proposed redevelopment was distributed and assigned to the study area roadway network based upon consideration of the factors listed above. Separate traffic assignments were generated for residential and for office trips. Detailed trip distribution and traffic assignment calculations and results are summarized in APPENDIX C.

Site-Generated Traffic Volumes

Site-generated traffic is calculated by multiplying the trip generation value (from **Table 3**) by the corresponding traffic assignments (from APPENDIX C). The resulting cumulative (for all uses) peak period site-generated traffic volumes at buildout of the Project are graphically summarized in APPENDIX A.

Traffic Operational Analysis — Roadway Links

Description

A roadway link is a segment of roadway between two intersections. Roadway link capacity analysis is a comparison of actual or forecasted traffic volumes to the theoretically optimum roadway capacity. The capacity of the roadway link is

^{*} After application of 5% transit reduction.

predominantly a function of the roadway's cross-section (i.e., number of lanes, lane widths, type of center divider, etc.). However, other more theoretical factors also apply, such as the character of environment and the functional classification of the roadway. Generally, roadway link capacity is less critical than intersection capacity; however, it can provide a gage of the utilization of given roadway.

A specific industry standard for roadway link capacity does not exist, but the typical concept is derived from a base saturation flow rate (i.e., the maximum theoretical rate of continuous flow under ideal, unobstructed conditions -- in the traffic engineering industry, this value is generally considered to range between 1,900-2,100 vehicles per lane per hour). A series of adjustment factors are then applied to the saturation flow rate to reflect the characteristics of a given location.

The North Central Texas Council of Governments (NCTCOG) – the metropolitan planning agency for the Dallas-Fort Worth region – has derived internal "hourly service volume" guidelines used for transportation modelling purposes. The NCTCOG values were based upon the principals presented in the *Highway Capacity Manual* with "regional calibration" factors applied. Though these perlane capacities, or "Service Volumes" (summarized in the table below), are intended for modelling purposes, they do provide a reasonable gage of theoretical capacity.

Hourly Service Volumes By Roadway Function

	Activity Density	Principo	al Arterial		Arterial & ge Road	Collector & Local Street			
Area Type	Range (per acre)	Median- Divided or One- Way	Undivided Two-Way	Median- Divided or One- Way	Undivided Two-Way	Median- Divided or One- Way	Undivided Two-Way		
CBD	>125	725	650	725	650	475	425		
Outer Business	30-125	775	725	775	725	500	450		
Urban Residential	7.5-30	850	775	825	750	525	475		
Suburban Residential	1.8-7.5	900	875	900	825	575	525		
Rural	<1.8	1,025	925	975	875	600	550		

To determine the utilization of a roadway, the volume:capacty ratio can be calculated – a v/c ratio of less than 1.0 indicates that the roadway is operating under capacity. NCTCOG's Level of Service denominations are as follows:

Volume: Capacity Ratio < 65% is LOS A/B/C,

Volume: Capacity Ratio > 65% and < 100% is LOS D/E,

Volume: Capacity Ratio ≥ 100% is LOS F

Summary of Results

For roadways adjacent to or in the vicinity of the subject site, the volume/capacity ratio was calculated for existing and site buildout conditions. A summary of the link capacity analysis is provided in **Table 4**. See specific recommendations in the *Recommendations* section of this report.

Table 4. Roadway Link Capacity Analysis Results Summary

ROADWAY/ SCENARIO	PEAK HOUR VOLUME	THEORETICAL HOURLY CAPACITY	V:C RATIO/ LEVEL OF SERVICE
<u>Walnut Hill Lane</u>			
Existing Conditions	3,267	5,100	0.64 – C
Buildout Year-Background Conditions	3,536	5,100	0.69 – D
Buildout Year-Buildout Conditions	3,751	5,100	0.74 – D
North Central NB FR			
Existing Conditions	2,599	2,475	1.05 – F
Buildout Year-Background Conditions	2,813	2,475	1.14 – F
Buildout Year-Buildout Conditions	2,922	2,475	1.18 – F

Traffic Operational Analysis — Roadway Intersections

Description

The level of performance of civil infrastructure can often be measured through an analysis of volume and capacity that considers various physical and operational characteristics of the system. For vehicular traffic an operational analysis of roadway intersection capacity over a 60-minute period is the most detailed type of analysis. An industry-standardized methodology for this type of analysis was developed by the Transportation Research Board and is presented in the Highway Capacity Manual (HCM). HCM uses the term "Level of Service" (or, LOS) to qualitatively describe the efficiency using a letter grade of A through F. Generally, LOS can be described as follows:

LOS A = free, unobstructed flow

LOS B = reasonably free flow

LOS C = stable flow

LOS D = approaching unstable flow

LOS E = unstable flow, operating at design capacity

LOS F = operating over design capacity

Traffic operational analysis is typically measured in one-hour periods during day-to-day peak conditions. In most urban settings, LOS C, or better, is desirable, although LOS D is considered to be acceptable in urban conditions; LOS E indicates a facility or maneuver is approaching capacity, while LOS F is theoretically an over-capacity

condition. On highly-utilized transportation facilities, brief periods of LOS E or F conditions are not uncommon for during peak periods. In some cases measures to increase capacity, either through operational changes and/or physical improvements, can be identified to improve efficiency and sometimes raise Level of Service.

For traffic-signal-controlled ("signalized") intersections and STOP-controlled ("unsignalized") intersections, LOS is determined based upon the calculated average seconds of delay per vehicle. For signalized intersections the average delay per vehicle can be effectively calculated for the entire intersection; however, for unsignalized intersections the average delay per vehicle is calculated only by approach or by individual traffic maneuvers that must stop or yield right-ofway.

NOTE: The HCM unsignalized intersection analysis methodology was developed and calibrated for low-to-moderate volume intersections. When applied to intersections with one or more high-volume or high-capacity approaches, the analyses often reflect poor results (i.e., low Level of Service). However, the actual delay/operational conditions are typical of similar locations and do not necessarily represent unique conditions. Low-performing, high-volume, unsignalized intersections cannot be analytically mitigated unless a traffic signal is installed. (Traffic signal installation is subject to a detailed analysis of established criteria AND approval of the responsible agency. Neither Level of Service nor vehicle delay is a warrant for traffic signal installation.)

The following table summarizes the LOS criteria for signalized and unsignalized intersections as defined in the latest edition of the *Highway Capacity Manual*.

	Signalized Intersection (Average Delay per Vehicle)	Unsignalized Intersection (Average Delay per Vehicle)
LOS A	<u><</u> 10	<u><</u> 10
LOS B	> 10 - <u><</u> 20	> 10 - <u><</u> 15
LOS C	> 20 - <u>≤</u> 35	> 15 - <u><</u> 25
LOS D	> 35 - <u><</u> 55	> 25 - <u>≤</u> 35
LOS E	> 55 - <u><</u> 80	> 35 - <u>≤</u> 50
LOS F	> 80	> 50

Analysis Traffic Volumes

Determination of the traffic impact associated with the Project is measured by comparing the incremental change in operational conditions during peak periods with and without site-related traffic. APPENDIX A provides exhibits summarizing the following:

- Existing traffic volumes during study peak hours
- Projected Background traffic volumes at the Site Buildout Year during study peak hours
- Projected Site-Generated traffic volumes during study peak hours
- Projected Background-plus-Site-Generated traffic volumes at the Site Buildout Year during study peak hours

 Projected five years after site buildout traffic volumes, including Site-Generated traffic during study peak hours

A summary of the existing intersection/roadway geometry and traffic control devices is also graphically summarized in APPENDIX A.

Summary of Results

Intersection capacity analyses presented in this study were performed using the *Synchro* software package. **Table 5** and **Table 6** provide a summary of the peak period intersection operational conditions under the analysis conditions presented previously. Detailed software output is provided in APPENDIX D.

SITE ACCESS EVALUATION

The City of Dallas *Street Design Manual* suggests various site access items should be evaluated for each project, where applicable. **Table 7** summarizes the findings and recommendations of these evaluations. Applicable supplemental information is provided in APPENDIX E.

<< REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK >>

NOTE: Traffic signal operational parameters used in this analysis were based upon actual, existing traffic signal operational characteristics observed in the field at the time of traffic data collection.

Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)

Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)

See specific recommendations in the SUMMARY OF FINDINGS AND RECOMMENDATIONS section of this report.

Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)

		EXISTING CONDITIONS						NO-BUILD CONDITIONS					BUILD CONDITIONS						
INTERSECTION			AM			PM			AM			PM			AM			PM	
		LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue
Walnut Hill Lane	Overall	В	(17.4)		С	(30.5)		В	(17.4)		C	(32.1)		В	(17.6)		С	(32.5)	
@ Site Driveway 1	EB	В	(17.4)	319 ft	С	(28.7)	517 ft	В	(16.6)	357 ft	С	(30.3)	582 ft	В	(16.6)	286 ft	С	(30.3)	589 ft
	WB	В	(17.1)	296 ft	С	(30.4)	467 ft	В	(17.8)	331 ft	С	(31.8)	527 ft	В	(18.1)	350 ft	С	(33.5)	578 ft
	NB	С	(31.0)	43 ft	D	(51.6)	217 ft	С	(33.7)	48 ft	D	(54.7)	236 ft	С	(33.9)	48 ft	Е	(55.6)	237 ft
	SB	В	(18.4)	40 ft	С	(20.8)	66 ft	С	(20.1)	44 ft	С	(21.3)	70 ft	В	(18.5)	63 ft	С	(22.3)	126 ft

NOTE: Traffic signal operational parameters used in this analysis were based upon actual traffic signal operational characteristics observed in the field at the time of data collection.

Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)

	TRAFFIC		EXIS	TING C	CONDI	TIONS			NO-	BUILD (COND	ITIONS			BU	ILD CO	NDITIC	ONS	
INTERSECTION	MANEUVER		AM			PM			АМ		PM			AM			PM		
		LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue	LOS	delay	queue
Walnut Hill Lane	EBL	D	(27.5)	26 ft	D	(26.6)	28 ft	D	(33.8)	35 ft	D	(32.4)	38 ft	Е	(37.4)	40 ft	D	(34.3)	40 ft
@ Manderville Lane	SB	С	(20.2)	19 ft	D	(27.6)	63 ft	С	(22.6)	24 ft	D	(34.8)	85 ft	D	(25.5)	33 ft	E	(38.8)	94 ft
Manderville Lane	NBL	Α	(7.4)	0 ft	Α	(7.5)	0 ft	Α	(7.4)	0 ft	Α	(7.5)	0 ff	Α	(7.4)	0 ft	Α	(7.5)	0 ft
@ Glen Lakes Drive	EBLR	Α	(8.9)	2 ft	Α	(9.3)	2 ft	Α	(8.9)	2 ft	Α	(9.4)	2 ft	Α	(9.0)	2 ft	Α	(9.4)	2 ft
N Central Expressway NBFR @ Glen Lakes Drive	WBR	В	(11.7)	7 ft	В	(12.2)	9 ft	В	(12.1)	7 ft	В	(12.7)	12 ft	В	(12.2)	7 ft	В	(12.8)	12 ft
Walnut Hill Lane	EBL	С	(24.2)	7 ft	D	(26.2)	14 ft	D	(27.7)	9 ft	D	(30.8)	16 ft	D	(31.2)	12 ft	D	(35.0)	26 ft
@ Site Driveway 2	SBLR	D	(32.9)	5 ft	F	(53.2)	28 ft	Е	(38.8)	7 ft	F	(76.7)	40 ft	F	(80.9)	56 ft	F	(>100)	148 ft
N Central Expressway NBFR @ Site Driveway 3	WBR	В	(11.4)	0 ft	В	(11.4)	2 ft	В	(11.7)	0 ft	В	(11.8)	2 ft	В	(12.4)	2 ft	В	(12.3)	5 ft
N Central Expressway NBFR @ Site Driveway 4	WBR	С	(17.8)	9 ft	D	(28.0)	21 ft	С	(19.4)	12 ft	D	(33.2)	28 ft	D	(26.4)	28 ft	F	(66.8)	101 ft

[Note: Bold font in the Unsignalized Intersection table refers to maneuvers within public right-of-way (others are within private property).]

KEY:

A, B, C, D, E, F = Level-of-Service NB-, SB-, EB-, WB- = intersection approach AM = AM Peak Hour of Adjacent Street

(##.#) = Average Seconds of Delay Per Vehicle -L, -T, -R = Left, Through, Right turning movement PM = PM Peak Hour of Adjacent Street

Table 7. Site Access Evaluation

EVALUATION	FINDING	G						
Auxiliary (Deceleration) Lanes	Construction of deceleration lanes not recommended due to urban, low-speed conditions.							
Signage and Pavement Markings on Public Rights-of-Way	Existing pavement markins on Walnut Hill Lane are in average condition; existing pavement markings on N Central Expressway are in fair condition; pavement markings on Manderville Lane are in poor condition. All signage is in good condition.							
Historical Accident Analysis	According to the TxDOT CRIS database, the serious injury (Type A), and Injustry (Type B) c (2019-2021) near the site are summarized in t data in Appendix E.)	rashes during	the past the	ree years				
	Location	Type K	Type A	Туре В				
	Manderville Lane at Glen Lakes Drive	0	0	1				
	Walnut Hill Lane at Manderville Lane	0	0	0				
	Walnut Hill Lane at Driveway 1	0	0	1				
	Walnut Hill Lane at Driveway 2	0	0	0				
	N Central Expy at Driveway 3	0	0	0				
	N Central Expy at Driveway 4	0	0	0				
	N Central Expy at Glen Lakes Drive	0	0					
Pedestrian Safety at Unsignalized Crossing(s)	N/A							
<u>Driveway Sight Distances</u>	All site driveways are existing and have no k conflicts.	nown history (of sight disto	nce				
Number of Access Points and Driveway Spacing	The subject site has three points of vehicular minor and not included in this analysis) and Central Expy. All access points are existing, access are proposed.	two points of	vehicular a	ccess on N				
	Driveway	<u>Upstream</u>	Downstream					
	Driveway 1 (Walnut Hill)	170'	460'	(Spacing is				
	Driveway 2 (Walnut Hill, traffic-signal controlled)	460'	355'	approximate and measured from nearest				
	Driveway 3 (N Central Expy)	90'	450'	curbline.)				
	Driveway 4 (N Central Expy)	450'	190'					
Corner Clearances	Anticipated to comply with City standards.							
Median Openings	Existing medians on Walnut Hill Lane at Drive	ways 1 and 2	. No new n	nedian				
	openings proposed.							
Shared Access	None anticipated.							
Stopping Sight Distance	N/A							
Traffic Signal or STOP Control Warrant Analysis	N/A							
Driveway Improvements	All proposed driveways are existing and are	not intended	to be mod	fied.				
<u> </u>								

SUMMARY OF FINDINGS AND RECOMMENDATIONS

NOTE: Recommendations presented in this report reflect the opinion of Pacheco Koch based solely upon technical analysis and professional judgment but are not intended to infer mandates or funding responsibility. Any proposed improvements in the public right-of-way are subject to approval of the responsible agency(-ies). Should the approving agency determine that any off-site improvements are required for approval of the Project, legal precedents apply with regard to jurisdiction and funding allocation.

The following findings and, if applicable, recommendations were based upon an analysis of the anticipated traffic impact generated by the proposed development scenario outlined in the **Project Description** section of this report.

FINDING: The Hill is an existing mixed-use development containing office and commercial uses located adjacent to the DART Walnut Hill Light Rail Station. The proposed Project includes a significant expansion of the office component on site and addition of a multifamily component. The commercial component of the project will largely remain intact although total floor area will decrease very slightly. Overall traffic volume generated by the site will increase by approximately 4,500 vehicular trip ends per day and 450 trip ends during peak hours.

FINDING: The site provides multiple driveways on Walnut Hill Lane and on the North Central Expressway. The main driveway on Walnut Hill Lane is controlled by a traffic signal, which operates at good Levels of Service during peak hour periods. The analysis of the additional traffic generated by the development indicate that, while average delays will increase slightly, the Levels of Service at the traffic-signal-controlled intersection will remain the same. For the traffic operations at the unsignalized intersections, average delays will also increase as a result of increased volumes; however, the effects on traffic maneuvers within the public right-of-way are not significant.

- * RECOMMENDATION: In order to encourage and facilitate use of existing transit services, improvements to the pedestrian environment along Manderville Lane are recommended. Such as:
 - a. Improve pedestrian corridors within the site and connections to the sidewalk.
 - b. Replace all existing pavement markings on Manderville Lane at the intersections with Walnut Hill Lane and Glen Lakes Drive.

END OF MEMO

APPENDIX A. Traffic Volumes Exhibits

APPENDIX B. Detailed Traffic Volume Data

ROADWAY: N Central Expressway NBFR

LOCATION: South of the On Ramp

DAY: Wednesday
DATE: 3-Nov
YEAR: 2021
SOURCE: CJ-Hensch

24-HOUR, BI-DIRECTIONAL VOLUME

29,482

(WEEKDAY)

			bound							
START TIME	0:00	0:15	0:30	0:45						
12:00 AM	16	23	22	18						
1:00 AM	8	7	6	8						
2:00 AM	10	6	3	5						
3:00 AM	6	7	6	2						
4:00 AM	4	7	6	13						
5:00 AM	16	17	18	33						
6:00 AM	34	44	57	75						
7:00 AM	90	92	129	166						
8:00 AM	164	163	188	198						
9:00 AM	168	148	138	145						
10:00 AM	148	122	134	129						
11:00 AM	130	130	133	166						
12:00 PM	180	167	194	182						
1:00 PM	180	179	170	174						
2:00 PM	156	180	182	163						
3:00 PM	182	212	166	199						
4:00 PM	214	178	163	188						
5:00 PM	214	203	210	203						
6:00 PM	171	164	148	149						
7:00 PM	104	122	93	85						
8:00 PM	81	80	80	60						
9:00 PM	51	64	58	41						
10:00 PM	40	35	29	33						
11:00 PM	34	39	18	24						

	Southbound									
0:00	0:15	0:30	0:45							
33	49	34	32							
22	20	14	14							
12	11	8	11							
9	14	11	8							
12	16	14	32							
24	37	46	60							
84	99	124	174							
183	249	256	300							
329	326	317	365							
302	288	254	284							
278	270	238	261							
288	290	290	296							
338	334	328	370							
333	375	321	344							
303	397	348	368							
432	448	368	410							
455	390	435	445							
487	441	411	349							
364	343	314	277							
252	288	235	188							
195	172	168	146							
121	138	122	106							
88	90	62	65							
76	60	42	52							

	Totals	
NID		D: Disc et
NB	SB	Bi-Direct.
79	148	227
29	70	99
24	42	66
21	42	63
30	74	104
84	167	251
210	481	691
477	988	1465
713	1337	2050
599	1128	1727
533	1047	1580
559	1164	1723
723	1370	2093
703	1373	2076
681	1416	2097
759	1658	2417
743	1725	2468
830	1688	2518
632	1298	1930
404	963	1367
301	681	982
214	487	701
137	305	442
115	230	345

8:00 AM 9:00 AM 4:45 PM 5:45 PM 5:00 PM 6:00 PM 4:30 PM 5:30 PM 24-Hour Total: (Bi-Direct.) AM Peak Hour Total: (Bi-Direct.) PM Peak Hour Total: Highest By Direction (NB): Highest By Direction (SB):

NB	SB	Bi-Direct.
9,600	19,882	29,482
713	1,337	2,050
815	1,784	2,599
830		
	1,808	

ROADWAY: Walnut Hill Lane LOCATION: East of Gold Lakes Trail

DAY: Wednesday
DATE: 3-Nov
YEAR: 2021
SOURCE: CJ Hensch

24-HOUR, BI-DIRECTIONAL VOLUME

38,404

(WEEKDAY)

		Eastb	ound	
	0:00	0:15	0:30	0:45
START TIME	30	23	26	0.45
12:00 AM		_		
1:00 AM	23	14	9	14
2:00 AM	14	17	12	18
3:00 AM	11	5	8	9
4:00 AM	8	14	12	34
5:00 AM	30	40	70	121
6:00 AM	139	190	217	214
7:00 AM	222	278	349	405
8:00 AM	355	378	358	369
9:00 AM	368	326	302	354
10:00 AM	288	292	290	297
11:00 AM	306	292	297	293
12:00 PM	303	277	316	362
1:00 PM	359	326	322	379
2:00 PM	323	334	362	346
3:00 PM	322	336	338	354
4:00 PM	350	368	390	404
5:00 PM	402	408	434	377
6:00 PM	391	392	328	259
7:00 PM	232	204	178	148
8:00 PM	141	135	138	122
9:00 PM	118	126	91	100
10:00 PM	70	72	65	56
11:00 PM	51	44	40	38

	Westbound											
0:00	0:15	0:30	0:45									
21	14	12	6									
16	11	6	6									
11	3	9	8									
7	11	11	12									
18	14	18	24									
30	38	58	60									
122	126	182	190									
240	310	345	400									
370	391	352	345									
270	286	286	291									
287	319	296	314									
303	318	350	330									
338	358	300	302									
336	285	314	330									
299	324	329	310									
340	374	329	374									
354	372	372	398									
466	379	376	286									
314	270	256	224									
198	226	168	132									
158	125	96	94									
114	76	78	71									
52	50	44	46									
44	31	34	17									

	Totals	
EB	WB	Bi-Direct.
101	53	154
60	39	99
61	31	92
33	41	74
68	74	142
261	186	447
760	620	1380
1254	1295	2549
1460	1458	2918
1350	1133	2483
1167	1216	2383
1188	1301	2489
1258	1298	2556
1386	1265	2651
1365	1262	2627
1350	1417	2767
1512	1496	3008
1621	1507	3128
1370	1064	2434
762	724	1486
536	473	1009
435	339	774
263	192	455
173	126	299

7:45 AM 8:45 AM 4:45 PM 5:45 PM 4:45 PM 5:45 PM 4:45 PM 5:45 PM 24-Hour Total: (Bi-Direct.) AM Peak Hour Total: (Bi-Direct.) PM Peak Hour Total: Highest By Direction (EB): Highest By Direction (WB):

EB	WB	Bi-Direct.
19,794	18,610	38,404
1,496	1,513	3,009
1,648	1,619	3,267
1,648		
	1,619	

Intersection Turning Movement Counts				NORTH LEG							EAST	LEG				SOU	TH LEG		WEST LEG						
		· ·						Approa	ich on		Westb		Approa	ich on		North		l Appro			Eastb		Approa	ch on	
								veway:					Hill Lan					iveway					Hill Lar		
							icles		Peds			icles		Peds			hicles		Peds			icles		Peds	
			START	END	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw	
City:		Dallas	7:00 AM	7:15 AM		3	0	7			2	202	4			2	0	0			10	214	7		
State:		Texas	7:15 AM	7:30 AM		4	1	4			4	304	7			2	0	1			8	248	9		
Day:		Wednesday	7:30 AM	7:45 AM		5	3	9			3	330	8			1	1	2			9	326	16		
Date:		3-Nov	7:45 AM	8:00 AM		3	1	8			7	351	5			4	0	4			9	363	26		
Year:		2022	8:00 AM	8:15 AM		6	2	16			9	354	5			6	0	4			18	313	28		
Data C	Collector:	Camera	8:15 AM	8:30 AM		7	0	13			9	346	9			4	0	0			14	341	23		
Data S		CJ Hensch & Associates, Inc.	8:30 AM	8:45 AM		5	2	16			12	306	5			8	0	2			12	346	23		
	Control:	Traffic Signal	8:45 AM	9:00 AM		5	1	26			17	357	7			8	1	2			11	330	25		
Obser	vations:		1						1										1 1					1	
			4:30 PM	4:45 PM		8	0	22			6	383	6			41	2	8			17	383	5		
1			4:45 PM	5:00 PM		10	1	24			10	344	6			43	1	10			15	377	10		
1			5:00 PM 5:15 PM	5:15 PM 5:30 PM		12 7	0 0	26 20			9	370 371	6 9			47 40	0 1	13 8			15 26	405 402	0 0		
			5:15 PM	5:45 PM		8	0	20			6 12	306	7			26	1	14			26	393	7		
			5:45 PM	6:00 PM		14	2	15			5	244	8			33	0	13			27 18	355	3		
			6:00 PM	6:15 PM		8	1	27			6	258	0			31	1	11			19	378	1		
			6:15 PM	6:30 PM		12	0	28			7	268	9			22	2	11			30	372	3		
			0.131 W	0.30 T W		12	-	20				200				22		- ''			30	312			
'n	Intersection Pi	HF: 0.97	Inters	ection PHV:	0	23	5	71		0	47	1,363	26		0	26	1	8		0	55	1,330	99		
Ρ̈́Α	Peak H			PHF:	_	0.82	0.63	0.68		_	0.69	0.95	0.72			0.81	0.25			1	0.76	0.96	0.88		
AM Peak Hour	Study Area P		Study	/ Area PHV:	0	21	5	53		0	37	1,357	24		0	22	0.20	10		0	53	1,363			
ΑM	Peak Ho		1	PHF:		0.75	0.63	0.83			0.77	0.96	0.67			0.69	0.00				0.74	0.94	0.89		
nc	Intersection Pi	HF: 0.98	Inters	ection PHV:	0	37	1	92		0	31	1,468	27		0	171	4	39		0	73	1,567	15		
Peak Hour		our 4:30 PM - 5:30 PM		PHF:		0.77	0.25	0.88			0.78	0.96	0.75			0.91	0.50				0.70	0.97	0.38		
1 Pe	Study Area P		Study	/ Area PHV:	0	37	1	90		0	37	1,391	28		0	156	3	45		0	83	1,577	17		
Δ	Peak Ho	our: 4:45 PM - 5:45 PM		PHF:		0.77	0.25	0.87			0.77	0.94	0.78			0.83	0.75	0.80			0.77	0.97	0.43		

Intersection Turning Movement Counts				NORTH LEG							EAST	LEG				SOUT	'H LEG		WEST LEG						
	ū					ound /		ich on		Westh	ound A		ich on		North		Appro			Eastbo		Approa	ch on		
						anderv					/alnut I						ville Lai					Hill Lan			
						icles	c zai	Peds			icles	2011	Peds			nicles		Peds			icles	2011	Peds		
		START	END	U	L	T	R	CCW CW	U	L	T	R	CCW CW	U	L	T	R	CCW CW	U	L	T	R	CCW CW		
City:	Dallas	7:00 AM	7:15 AM		0	0	16			0	184	1			0	0	0			13	188	0			
State:	Texas	7:15 AM	7:30 AM		0	0	20			0	291	3			0	0	0			7	248	0			
Day:	Wednesday	7:30 AM	7:45 AM		0	0	15			0	350	1			0	0	0			12	294	0			
Date:	3-Nov	7:45 AM	8:00 AM		0	0	15			0	353	1			0	0	0			11	355	1			
Year:	2022	8:00 AM	8:15 AM		0	0	13			0	362	1			0	0	0			16	262	0			
Data Co	llector: Camera	8:15 AM	8:30 AM		0	0	15			0	357	1			0	0	0			17	316	0			
Data So	urce: CJ Hensch & Associates, Inc	8:30 AM	8:45 AM		0	0	16			0	308	5			0	0	1			15	308	1			
Traffic C	ontrol: Minor Approach Stop	8:45 AM	9:00 AM		0	0	19			0	358	4			0	0	0			16	310	0			
Observa	itions:																								
		4:30 PM	4:45 PM		0	0	48			0	315	0			0	0	0			15	402	0			
		4:45 PM	5:00 PM		0	0	39			0	343	3			0	0	0			12	406	0			
		5:00 PM	5:15 PM		0	0	41			0	359	3			0	0	0			18	423	0			
		5:15 PM	5:30 PM		0	0	33			0	341	2			0	0	0	ļ		14	413	0			
		5:30 PM	5:45 PM		0	0	31			0	294	3			0	0	0			20	433	0			
		5:45 PM	6:00 PM		0	0	24			0	246	1			0	0	0			13	380	0			
		6:00 PM	6:15 PM		0	0	22			0	268	3			0	0	0			14	371	0			
		6:15 PM	6:30 PM		0	0	23			0	242	1			0	0	1			21	383	1			
'n	Intersection PHF: 0.94	Inters	ection PHV:	0	0	0	58		0	0	1,422	4		0	0	0	0		0	56	1,227	1			
ž H	Peak Hour 7:30 AM - 8:30 AM	1	PHF:		0.00	0.00	0.97			0.00	0.98	1.00			0.00	0.00	0.00			0.82	0.86	0.25			
AM Peak Hou	Study Area PHF: 0.93	Stud	y Area PHV:	0	0	0	59		0	0	1,380	8		0	0	0	1		0		1,241	2			
ΑM	Peak Hour: 7:45 AM - 8:45 AM		PHF:		0.00	0.00	0.92			0.00	0.95	0.40			0.00	0.00	0.25			0.87	0.87	0.50			
our	Intersection PHF: 0.96	Inters	ection PHV:	0	0	0	144		0	0	1,337	11		0	0	0	0		0	64	1,675	0			
¥ L	Peak Hour 4:45 PM - 5:45 PM	1	PHF:		0.00	0.00	0.88			0.00	0.93	0.92			0.00	0.00	0.00			0.80	0.97	0.00			
PM Peak Hour	Study Area PHF: 0.96	Study	y Area PHV:	0	0	0	144		0	0	1,337	11		0	0	0	0		0	64	1,675	0			
≥	Peak Hour: 4:45 PM - 5:45 PM		PHF:		0.00	0.00	0.88			0.00	0.93	0.92			0.00	0.00	0.00			0.80	0.97	0.00			

N Central Expressway NBFR Glen Lakes Drive N Central Expressway NBFR Gle		EAST LEG Westbound Approach	NORTH LEG Southbound Approach on		ersection Turning Movement Counts
START END U L T R CCW CW U L T R CW U U L					
City: Dallas 7.00 AM 7.15 AM 0 0 0 0 0 0 0 0 0					
State: Texas 7:15 AM 7:30 AM 0 0 0 0 0 0 0 0 0		U L T R (START END	STA
Day: Wednesday 7:30 AM 7:45 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 85 14 0 0 0	0 0 7	0 0 0	7:00 AM 7:15 AM	: Dallas 7:00
Date 3-Nov 7:45 AM 8:00 AM 0 0 0 0 0 11 0 155 30 0	4 0 86 15 0 0 0	0 0 4	0 0 0	7:15 AM 7:30 AM	re: Texas 7:15.
Year: 2022 8:00 AM 8:15 AM 0 0 0 0 0 0 0 10 0	7 0 124 15 0 0 0	0 0 7	0 0 0	7:30 AM 7:45 AM	: Wednesday 7:30.
Data Collector: Camera S:15 AM S:30 AM Data Source: CJ Hensch & Associates, Inc. Traffic Control: Minor Approach Stop S:45 AM S:00 AM S:45 AM S:45 AM S:00 AM S:45 AM	1 0 155 30 0 0 0	0 0 11	0 0 0	7:45 AM 8:00 AM	e: 3-Nov 7:45
Data Source: CJ Hensch & Associates, Inc. Traffic Control: Minor Approach Stop 8:45 AM 9:00 AM 0 0 0 0 0 0 13 0 177 26 0 0 0 0 0 0 0 0 0	0 158 35 0 0 0	0 0 10	0 0 0	8:00 AM 8:15 AM	r: 2022 8:00
Traffic Control: Minor Approach Stop Observations: 4:30 PM					
Observations: 4:30 PM 4:45 PM 0 0 0 144 0 151 6 0 4:45 PM 5:00 PM 0 0 0 15 0 175 5 0 5:00 PM 5:15 PM 0 0 0 19 0 197 10 0 5:15 PM 5:30 PM 0 0 0 16 0 191 4 0 5:30 PM 5:45 PM 0 0 0 0 18 0 198 3 0 5:45 PM 6:00 PM 0 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 0 0 9 0 167 9 0					
4:30 PM 4:45 PM 0 0 0 0 14 0 151 6 0 4:45 PM 5:00 PM 0 0 0 0 15 0 175 5 0 5:00 PM 5:15 PM 0 0 0 0 19 0 197 10 0 5:15 PM 5:30 PM 0 0 0 0 16 0 191 4 0 5:30 PM 5:45 PM 0 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 0 9 0 167 9 0	9 0 175 29 0 0 0	0 0 19	0 0 0	8:45 AM 9:00 AM	• • • • • • • • • • • • • • • • • • • •
4:45 PM 5:00 PM 0 0 0 0 15 0 175 5 0 5:00 PM 5:15 PM 0 0 0 0 199 0 197 10 0 5:15 PM 5:30 PM 0 0 0 16 0 191 4 0 5:30 PM 5:45 PM 0 0 0 0 18 0 198 3 0 5:45 PM 6:00 PM 0 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 0 9 0 167 9 0	0 151 6 0 0 0	0 0 14		4:20 DM 4:45 DM	
5:00 PM 5:15 PM 0 0 0 0 19 0 197 10 0 5:15 PM 5:30 PM 5:45 PM 0 0 0 0 16 0 191 4 0 5:30 PM 5:45 PM 0 0 0 0 18 0 198 3 0 5:45 PM 6:00 PM 0 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 0 9 0 167 9 0				—	
5:15 PM 5:30 PM 0 0 0 0 16 0 191 4 0 5:30 PM 5:45 PM 0 0 0 0 18 0 198 3 0 5:45 PM 6:00 PM 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 0 9 0 167 9 0					
5:30 PM 5:45 PM 0 0 0 18 0 198 3 0 5:45 PM 6:00 PM 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 9 0 167 9 0					
5:45 PM 6:00 PM 0 0 0 17 0 186 6 0 6:00 PM 6:15 PM 0 0 0 9 0 167 9 0					
6:00 PM 6:15 PM 0 0 0 0 0 0 0 167 9 0					
				L	
				0.13 T W	0.131
Intersection PHF: 0.96 Intersection PHV: 0 0 0 0 0 0 0 0 0 70 0 0 772 23 0 0 0	66 0.00 0.94 0.86 0.00 0.00 0.00 12 0 0 649 121 0 0 0 0 81 0.00 0.92 0.86 0.00 0.00 0.00 70 0 0 772 23 0 0 0 0 92 0.00 0.97 0.58 0.00 0.00 0.00	0.00 0.00 0.66 0 0 42 0.00 0.00 0.81 0 0 0 70 0.00 0.00 0.92	0.00 0.00 0.00 0 0 0 0 0.00 0.00 0.00 0 0 0 0 0.00 0.00	PHF: Study Area PHV: PHF: Intersection PHV: PHF:	Peak Hour 8:00 AM - 9:00 AM Study Area PHF: 0.94 Peak Hour: 7:45 AM - 8:45 AM
Study Area Prin: 0.94 Study Area Prin: 0.94 Study Area Prin: 0.90 0.00				→ 11	Deek House AAS DM 5 45 DM

Interse	ection Turning Movement Counts					NORT	H LEG				EAST	LEG				SOUT	'H LEG				WES	T LEG	
	3 - 1 - 1 - 1 - 1				Southb	ound A		ich on		Westk		Approa	ich on		North		Appro			Eastb		Approa	ch on
						anderv						es Driv					ville La					ces Driv	
						icles		Peds			nicles		Peds			nicles		Peds			icles		Peds
		START	END	U	L	T	R	CCW CW	U	L	T	R	CCW CW	U	L	T	R	CCW CW	U	L	T	R	CCW CW
City:	Dallas	7:00 AM	7:15 AM		3	16	1			1	8	17			0	10	0			0	4	0	
State:	Texas	7:15 AM	7:30 AM		6	22	2			1	10	11			0	6	2			0	1	1	
Day:	Wednesday	7:30 AM	7:45 AM		6	14	4			0	13	12			0	11	0			2	3	3	
Date:	3-Nov	7:45 AM	8:00 AM		5	15	3			1	23	26			0	10	1			3	3	2	
Year:	2022	8:00 AM			3	9	4			4	19	27			6	10	0			2	1	3	
Data Co	ollector: Camera	8:15 AM	8:30 AM		8	12	2			2	21	26			1	14	0			0	4	2	
Data So	ource: CJ Hensch & Associates,	Inc. 8:30 AM	8:45 AM		10	14	2			2	15	37			1	11	4			1	3	3	
Traffic (Control: All-Way Stop	8:45 AM	9:00 AM		12	13	7			2	22	26			5	11	1			2	3	2	
Observ	ations:																						
		4:30 PM	4:45 PM		26	38	2			4	8	16			1	11	0			2	8	5	
		4:45 PM	5:00 PM		16	30	3			3	10	9			1	12	1			3	10	5	
		5:00 PM	5:15 PM		42	36	1			2	10	17			2	18	0			4	12	4	
		5:15 PM	5:30 PM		17	26	1			2	11	14			1	12	1			1	8	4	
		5:30 PM	5:45 PM		22	25	0			3	10	9			2	21	1			0	9	3	
		5:45 PM	6:00 PM		9	17	1			2	8	6			2	12	0			3	6	8	
		6:00 PM	6:15 PM		16	16	0			0	1	7			1	12	1			1	5	4	
		6:15 PM	6:30 PM		11	16	1			8	6	8			0	21	0			1	1	3	
'n	Intersection PHF: 0.92	Inters	section PHV:	0	33	48	15		0	10	77	116		0	13	46	5		0	5	11	10	
AM Peak Hou	Peak Hour 8:00 AM - 9:00 AM	1	PHF:		0.69	0.86	0.54			0.63	0.88	0.78			0.54	0.82	0.31			0.63	0.69	0.83	
Pea	Study Area PHF: 0.91	Stud	y Area PHV:	0	26	50	11		0	9	78	116		0	8	45	5		0	6	11	10	
AM	Peak Hour: 7:45 AM - 8:45 AM		PHF:		0.65	0.83	0.69			0.56	0.85	0.78			0.33	0.80	0.31			0.50	0.69	0.83	
-	Intersection PHF: 0.79	Inters	section PHV:	0	101	130	7		0	11	39	56		0	5	53	2		0	10	38	18	
PM Peak Hour	Peak Hour 4:30 PM - 5:30 PM		PHF:		0.60	0.86	0.58			0.69	0.89	0.82			0.63	0.74	0.50			0.63	0.79	0.90	
Pea	Study Area PHF: 0.77	Stud	y Area PHV:	0	97	117	5		0	10	41	49		0	6	63	3		0	8	39	16	
₹	Peak Hour: 4:45 PM - 5:45 PM		PHF:		0.58	0.81	0.42			0.83	0.93	0.72			0.75	0.75	0.75			0.50	0.81	0.80	

Intere	section Turn	ing Movement Counts					NORT	H LEG				EAST	LEG				SOUT	'H LEG				WES	T LEG	
meers	occuon rum	ing movement counts				South	oound .		rch on		Westh		Approa	ch on		North			ach on		Fasth		Approad	h on
							ral Expi						/eway						ay NBFR				veway 3	
							nicles	233114	Peds			icles	· ciray ·	Peds			nicles		Peds			icles	·c···a	Peds
			START	END	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw
City:		Dallas	7:00 AM	7:15 AM		0	0	0			0	0	1			0	103	0			0	0	0	
State:		Texas	7:15 AM	7:30 AM		0	0	0			0	0	1			0	96	1			0	0	0	
Day:		Wednesday	7:30 AM	7:45 AM		0	0	0			0	0	0			0	144	2			0	0	0	
Date:		3-Nov	7:45 AM	8:00 AM		0	0	0			0	0	0			0	183	0			0	0	0	
Year:		2022	8:00 AM	8:15 AM		0	0	0			0	0	0			0	201	8			0	0	0	
	Collector:	Camera	8:15 AM	8:30 AM		0	0	0			0	0	2			0	180	5			0	0	0	
	Source:	CJ Hensch & Associates, Inc.	8:30 AM	8:45 AM		0	0	0			0	0	2			0	215	4			0	0	0	
	: Control:	Minor Approach Stop	8:45 AM	9:00 AM		0	0	0			0	0	1			0	200	8			0	0	0	
	vations:								l .					J					1	<u> </u>				
			4:30 PM	4:45 PM		0	0	0			0	0	6			0	150	6			0	0	0	
			4:45 PM	5:00 PM		0	0	0			0	0	6			0	166	4			0	0	0	
			5:00 PM	5:15 PM		0	0	0			0	0	7			0	207	4			0	0	0	
			5:15 PM	5:30 PM		0	0	0			0	0	0			0	196	3			0	0	0	
			5:30 PM	5:45 PM		0	0	0			0	0	2			0	198	2			0	0	0	
			5:45 PM	6:00 PM		0	0	0			0	0	4			0	185	5			0	0	0	
			6:00 PM	6:15 PM		0	0	0			0	0	8			0	171	4			0	0	0	
			6:15 PM	6:30 PM		0	0	0			0	0	6			0	156	1			0	0	0	
our	Intersection P	HF: 0.93	Inters	ection PHV:	0	0	0	0		0	0	0	5		0	0	796	25		0	0	0	0	
Α̈́	Peak H	lour 8:00 AM - 9:00 AM	Ī	PHF:		0.00	0.00	0.00			0.00	0.00	0.63			0.00	0.93	0.78			0.00	0.00	0.00	
AM Peak Hour	Study Area P	PHF: 0.90	Study	Area PHV:	0	0	0	0		0	0	0	4		0	0	779	17		0	0	0	0	
AM	Peak H	our: 7:45 AM - 8:45 AM	<u> </u>	PHF:		0.00	0.00	0.00			0.00	0.00	0.50			0.00	0.91	0.53	<u> </u>	<u>L</u>	0.00	0.00	0.00	
our	Intersection P	HF: 0.93	Inters	ection PHV:	0	0	0	0		0	0	0	13		0	0	786	14		0	0	0	0	
ξ	Peak H	lour 5:00 PM - 6:00 PM		PHF:		0.00	0.00	0.00			0.00	0.00	0.46			0.00	0.95	0.70			0.00	0.00	0.00	
PM Peak Hour	Study Area P		Study	Area PHV:	0	0	0	0		0	0	0	15		0	0	767	13		0	0	0	0	
PM	Peak H	our: 4:45 PM - 5:45 PM		PHF:		0.00	0.00	0.00			0.00	0.00	0.54			0.00	0.93	0.81			0.00	0.00	0.00	

Inters	ection Turni	ng Movement Counts					NORT	H LEG				EAST	LEG				SOUT	TH LEG				WES	T LEG	
						Southl	oound.	Approa	ich on		Westb	ound A	Approa	ch on		North	bound	Appro	ach on		Eastb	ound	Approad	ch on
							ral Expi						eway 4						y NBFR					
							nicles		Peds		Veh	icles		Peds			hicles		Peds		Veh	icles		Peds
			START	END	U	L	Т	R	ccw cw	U	L	T	R	ccw cw	U	L	Т	R	ccw cw	U	L	Т	R	ccw cw
City:		Dallas	7:00 AM	7:15 AM		0	0	0			0	0	7			0	179	14			0	0	0	
State:		Texas	7:15 AM	7:30 AM		0	0	0			0	0	1			0	244	12			0	0	0	
Day:		Wednesday	7:30 AM	7:45 AM		0	0	0			0	0	10			0	255	21			0	0	0	
Date:		3-Nov	7:45 AM	8:00 AM		0	0	0			0	0	5			0	294	16			0	0	0	
Year:		2022	8:00 AM	8:15 AM		0	0	0			0	0	6			0	329	19			0	0	0	
	Collector:	Camera	8:15 AM	8:30 AM		0	0	0			0	0	13			0	316	26			0	0	0	
	Source:	CJ Hensch & Associates, Inc.	8:30 AM	8:45 AM		0	0	0			0	0	9			0	310	20			0	0	0	
	Control:	Minor Approach Stop	8:45 AM	9:00 AM		0	0	0			0	0	15			0	352	25			0	0	0	
	vations:	or / ipprodon otop	0.107.00	0.0071111													002		1					
			4:30 PM	4:45 PM		0	0	0			0	0	14			0	426	18			0	0	0	
			4:45 PM	5:00 PM		0	0	0			0	0	17			0	433	24			0	0	0	
			5:00 PM	5:15 PM		0	0	0			0	0	9			0	486	27			0	0	0	
			5:15 PM	5:30 PM		0	0	0			0	0	6			0	441	23			0	0	0	
			5:30 PM	5:45 PM		0	0	0			0	0	13			0	401	22			0	0	0	
			5:45 PM	6:00 PM		0	0	0			0	0	13			0	344	23			0	0	0	
			6:00 PM	6:15 PM		0	0	0			0	0	16			0	351	15			0	0	0	
			6:15 PM	6:30 PM		0	0	0			0	0	23			0	323	23			0	0	0	
			0.13 F W	0.30 F WI		U	U	U			U	U	23			U	323	23	1			U	U	
<u> </u>		T	1																					
dour	Intersection P		Inters	ection PHV:	0	0	0	0		0	0	0	43		0	0	1,307			0	0	0	0	
ak F	Peak H			PHF:	ļ	0.00	0.00	0.00			0.00	0.00	0.72			0.00	0.93	0.87			0.00	0.00	0.00	
AM Peak Hou	Study Area P		Study	Area PHV:	0	0	0	0		0	0	0	33		0	0	1,249			0	0	0	0	
—	Peak Ho			PHF:		0.00	0.00	0.00			0.00	0.00	0.63			0.00	0.95				0.00	0.00	0.00	
lour	Intersection P		Inters	ection PHV:	0	0	0	0		0	0	0	46		0	0	1,786			0	0	0	0	
Peak Hour	Peak H			PHF:		0.00	0.00	0.00			0.00	0.00	0.68			0.00	0.92	0.85			0.00	0.00	0.00	
1 Pe	Study Area P		Study	Area PHV:	0	0	0	0		0	0	0	45		0	0	1,761			0	0	0	0	
₽	Peak Ho	our: 4:45 PM - 5:45 PM		PHF:		0.00	0.00	0.00			0.00	0.00	0.66			0.00	0.91	0.89			0.00	0.00	0.00	

Interse	ection Turni	ng Movement Counts			9	Southb	NORTH ound A	Approa				EAST ound A	Approa			Northb		Approa	ach on			WES T	pproa	
							te Driv	eway 2	Peds			/alnut F iicles	Hill Lan	Peds			ite Driv iicles	veway	2 Peds	-		/alnut H nicles	Hill Lan	e Peds
			START	END	U	L	T	R	CCW CW	U	L	T	R	CCW CW	U	L	T	R	CCW CW	U	L	T	R	CCW CW
City:		Dallas	7:00 AM	7:15 AM		3	0	9			1	193	4			1	0	2			3	198	15	
State:		Texas	7:15 AM	7:30 AM		1	0	1			3	310	3			1	0	0			4	240	11	
Day:		Wednesday	7:30 AM	7:45 AM		1	0	1			10	337	5			1	0	0			3	315	12	
Date:		3-Nov	7:45 AM	8:00 AM		0	0	0			10	365	5			0	0	2			5	353	23	
Year:		2022	8:00 AM	8:15 AM		1	0	3			14	367	7			1	0	0			7	288	27	
Data Co	ollector:	Camera	8:15 AM	8:30 AM		3	0	4			10	360	11			0	0	1			4	322	25	
Data So	ource:	CJ Hensch & Associates, Inc.	8:30 AM	8:45 AM		1	0	2			22	322	6			5	0	10			1	322	21	
Traffic (Control:	Minor Approach Stop	8:45 AM	9:00 AM		1	1	7			8	371	12			5	0	8			1	313	25	
Observ	rations:													1					1					
			4:30 PM	4:45 PM		4	0	4			4	354	8			6	0	18			6	400	1	
			4:45 PM	5:00 PM		3	0	3			2	364	10			5	0	13			12	393	2	
			5:00 PM			3	0	7			2	385	6			3	0	20			7	416	1	
			5:15 PM	5:30 PM		2	0	10			5	360	16			2	0	12			5	409	1	
			5:30 PM 5:45 PM	5:45 PM 6:00 PM		8 1	0 0	6 5			4 1	308 259	10 7			2 1	0 0	11 5			6 4	418 383	1 1	
			6:00 PM	6:15 PM			0	7								1	0	5					0	
						5					5	266	9			1					6	378		
			6:15 PM	6:30 PM		4	0	17			3	244	13			1	0	1			6	394	0	
lour	Intersection Ph		Inters	ection PHV:	0	5	0	9		0	56	1,414	29		0	6	0	13		0	17	1,285	96	
ak h	Peak Ho			PHF:	<u> </u>	0.42	0.00	0.56			0.64	0.96	0.66			0.30	0.00	0.33			0.61	0.91	0.89	
AM Peak Hour	Study Area Pl Peak Ho		Study	/ Area PHV: PHF:	0	5 0.42	0 0.00	9 0.56		0	56 0.64	1,414 0.96	29 0.66		0	6 0.30	0 0.00	13 0.33		0	17 0.61	1,285 0.91	96 0.89	
-	Intersection Ph		Inters	ection PHV:	0	12	0	24		0	13	1,463	40		0	16	0.00	63		0	30	1,618	5	
Peak Hour	Peak H			PHF:		0.75	0.00	0.60			0.65	0.95	0.63			0.67	0.00	0.79			0.63	0.97	0.63	
Peal	Study Area Pl		Study	/ Area PHV:	0	16	0	26		0	13	1,417	42		0	12	0	56		0	30	1,636	5	
M	•	our: 4:45 PM - 5:45 PM	1	PHF:		0.50	0.00	0.65			0.65	0.92	0.66			0.60	0.00	0.70			0.63	0.98	0.63	

APPENDIX C. Site-Generated Traffic Supplement

PROJECTED TRIP GENERATION

	Developn	nent Program				Wee	kday Trip End	ls		
				Weekday	AM Peak	- Adjacent	Street	PM Peak	- Adjacent	Street
	Land Use	Quantity	Units	Daily	In	Out	Total	In	Out	Total
Use "A" ITE LUC 710	Office	200,00	00 SF	2168	268	36	304	49	239	288
Use "B" ITE LUC 221	Multifamily (Mid-Rise)	41	L5 DU	1884	35	119	154	99	63	162
Subtotal (no adjustments)				4052	303	155	458	148	302	450
Ped/Trans Reductions				203	15	8	23	7	15	23
Internal Capture										
Subtotal				3849	288	147	435	141	287	427
Pass-by										
Net Driveway Vols				3849	288	147	435	141	287	427

- Traffic Assignment

Site Generated Trip Distribution - Office - Inbound

The Hill, Dallas, Texas
PK #3610-21.560 (SMN: 01/20/22)

- Traffic Assignment

Site Generated Trip Distribution - Office - Outbound

The Hill, Dallas, Texas
PK #3610-21.560 (SMN: 01/20/22)

- Traffic Assignment

Site Generated Trip Distribution - Multifamily - Inbound

The Hill, Dallas, Texas
PK #3610-21.560 (SMN: 01/31/22)

X% - Traffic Assignment

Site Generated Trip Distribution - Multifamily - Outbound

The Hill, Dallas, Texas PK #3610-21.560 (SMN: 01/20/22)

APPENDIX D. Detailed Intersection Capacity Analysis Results

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Existing
Timing Plan: AM

	•	→	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† †		7	ተተ _ጉ		7	f)		, j	ĵ»	
Traffic Volume (vph)	53	1363	100	37	1357	24	22	0	10	21	5	53
Future Volume (vph)	53	1363	100	37	1357	24	22	0	10	21	5	53
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	58	1482	109	40	1475	26	24	0	11	23	5	58
Shared Lane Traffic (%)												
Lane Group Flow (vph)	58	1591	0	40	1501	0	24	11	0	23	63	0
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	12.0	72.0		12.0	72.0		18.0	18.0		18.0	18.0	
Total Split (%)	10.0%	60.0%		10.0%	60.0%		15.0%	15.0%		15.0%	15.0%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	None		None	None		None	None		Max	Max	
Act Effct Green (s)	41.9	38.4		41.6	38.2		7.2	7.2		19.8	19.8	
Actuated g/C Ratio	0.53	0.48		0.52	0.48		0.09	0.09		0.25	0.25	
v/c Ratio	0.24	0.65		0.17	0.62		0.15	0.03		0.05	0.14	
Control Delay	10.5	17.6		9.7	17.3		45.1	0.2		34.4	12.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.5	17.6		9.7	17.3		45.1	0.2		34.4	12.6	
LOS	В	В		Α	В		D	Α		С	В	
Approach Delay		17.4			17.1			31.0			18.4	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)	13	251		9	235		13	0		11	2	
Queue Length 95th (ft)	30	319		23	296		43	0		37	40	
Internal Link Dist (ft)		431			420			314			314	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	265	4116		265	4143		329	493		440	442	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.22	0.39		0.15	0.36		0.07	0.02		0.05	0.14	

ntersection Summary

Cycle Length: 120
Actuated Cycle Length: 79.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 17.4

Intersection LOS: B

01/19/2022 Synchro 10 Report SMN Page 1

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Existing Timing Plan: AM

Intersection Capacity Utilization 51.9% Analysis Period (min) 15 ICU Level of Service A

Splits and Phases: 1: Private Driveway/Site Driveway 1 & Walnut Hill Lane

01/19/2022 Synchro 10 Report SMN Page 2

Intersection							
Int Delay, s/veh	0.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*		411		ኘ	7	
Traffic Vol, veh/h	17	1285	1414	29	5	9	
Future Vol. veh/h	17	1285	1414	29	5	9	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	150	-		-	0	0	
Veh in Median Storag	e,# -	0	0	-	0	-	
Grade. %		0	0		0		
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	18	1397	1537	32	5	10	
Major/Minor	Major1		Major2		/linor2		
Conflicting Flow All	1569	0	viajui z	0	2148	785	
Stage 1	1509	-	-	-	1553	700	
Stage 2					595		
Critical Hdwy	5.34			-	5.74	7.14	
Critical Hdwy Stg 1	5.54				6.64	7.14	
Critical Hdwy Stg 2	-			-	6.04	-	
Follow-up Hdwy	3.12	-			3.82	3.92	
Pot Cap-1 Maneuver	206				78	288	
Stage 1	200				110	200	
Stage 2				-	468		
Platoon blocked. %					100		
Mov Cap-1 Maneuver	206	_		_	71	288	
Mov Cap-1 Maneuver					71	200	
Stage 1				-	100		
Stage 2	-				468		
Olago 2					-100		
Annragah	ED		WD		C.D.		
Approach	EB		WB		SB		
HCM Control Delay, s	0.3		0		32.9		
HCM LOS					D		
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)		206	-	-	-	71	288
HCM Lane V/C Ratio		0.09	-	-	-	0.077	0.034
HCM Control Delay (s	s)	24.2	-	-	-	59.9	17.9
HCM Lane LOS		С	-	-	-	F	С
HCM 95th %tile Q(vel	h)	0.3	-	-	-	0.2	0.1
,							

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	ተተተ	ተ ተኈ		¥	
Traffic Vol, veh/h	59	1241	1380	8	0	59
Future Vol, veh/h	59	1241	1380	8	0	59
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	64	1349	1500	9	0	64
Major/Minor I	Major1		Major2	ı	Minor2	
Conflicting Flow All	1500	0	-	0	2173	755
Stage 1	-	-	-	-	1505	-
Stage 2					668	
Critical Hdwy	5.34	-	-	-	5.74	7.14
Critical Hdwy Stg 1	-		-	-	6.64	-
Critical Hdwy Stg 2	_	-	-	_	6.04	-
Follow-up Hdwy	3.12		-	-	3.82	3.92
Pot Cap-1 Maneuver	223	-	_	-	76	301
Stage 1	-		-	-	118	-
Stage 2	_	-	-	_	429	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	223	-	-	-	54	301
Mov Cap-2 Maneuver					54	-
Stage 1	-	-	_	-	84	-
Stage 2	-		-	-	429	-
A b	EB		WD		CD.	
Approach			WB		SB	
HCM Control Delay, s	1.2		0		20.2	
HCM LOS					С	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		223	-	-	-	301
HCM Lane V/C Ratio		0.288	-	-	-	0.213
HCM Control Delay (s)		27.5	-	-	-	20.2
HCM Lane LOS		D	-	-	-	С
HCM 95th %tile Q(veh))	1.1	-	-	-	0.8

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	4	
Traffic Vol, veh/h	6	10	8	45	50	11
Future Vol, veh/h	6	10	8	45	50	11
Conflicting Peds, #/hr	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	11	9	49	54	12
						-
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	127	60	66	0	iviajuiz	0
Stage 1	60	-	-	-	-	-
Stage 2	67	-				
Critical Hdwy	6.42	6.22	4.12	-	-	
Critical Hdwy Stg 1	5.42	0.22	4.12	-		
Critical Hdwy Stg 2	5.42	-			-	
Follow-up Hdwy		3.318	2.218	-	_	
Pot Cap-1 Maneuver	3.518	1005	1536	-	-	
	963	1005		-	-	-
Stage 1			-	-	-	-
Stage 2	956	-	-	-	-	-
Platoon blocked, %	000	4005	4500	-	-	-
Mov Cap-1 Maneuver		1005	1536	-	-	-
Mov Cap-2 Maneuver	863	-	-	-	-	-
Stage 1	957	-	-	-	-	-
Stage 2	956	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.9		1.1		0	
HCM LOS	Α					
Minor Lane/Major Mun	nt	NBL	NRT	EBLn1	SBT SBR	
Minor Lane/Major Mvn	ш	1536		947		
Capacity (veh/h)			-			
HCM Cartes Dalay (١	0.006		0.018		
HCM Control Delay (s)	7.4	0	8.9		
HCM Lane LOS	,	A	Α	A		
HCM 95th %tile Q(veh	1)	0	-	0.1		

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDK.	<u>ND1</u>	NON	ODL	ועט
Traffic Vol., veh/h	0	42	TT 649	121	0	0
Future Vol. veh/h	0	42	649	121	0	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-		16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	46	705	132	0	0
Major/Minor	Minor1		Major1			
-1				0		
Conflicting Flow All	-	419	0	-		
Stage 1	-	-				
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	583	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver	-	583	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1		_	-	_		
Stage 2			-			
Stage 2	-		-	-		
Approach	WB		NB			
HCM Control Delay, s	11.7		0			
HCM LOS	В					
		N.D.T.	N.D.D.	·/D1 /		
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1		
Capacity (veh/h)		-	-	583		
HCM Lane V/C Ratio		-	-	0.078		
HCM Control Delay (s)		-	-	11.7		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)	-	-	0.3		

Intersection						
Int Delay, s/veh	0.1					
•	•••	WEE		N.D.F.	0.07	0.00
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	↑ ↑			
Traffic Vol, veh/h	0	4	779	17	0	0
Future Vol, veh/h	0	4	779	17	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-		-		-	
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-		16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	4	847	18	0	0
Major/Minor N	Minor1		Major1			
Conflicting Flow All	-	433	0	0		
Stage 1	-	-	-	-		
Stage 2	-			-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-		-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	571	-	_		
Stage 1	0	-		-		
Stage 2	0	-	-	_		
Platoon blocked, %						
			-	_		
	_	571	-	-		
Mov Cap-1 Maneuver		571	-	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	-	571 -	-	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1		-	-	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	-	-	-	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	-	-	- - -	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	- - - WB	-	- - - NB	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	WB 11.4	-	- - -	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	- - - WB	-	- - - NB	-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	WB 11.4	-	- - - - NB 0			
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	WB 11.4	- - - NBT	- - - - NB 0	- - - - - WBLn1		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	WB 11.4	NBT	NBRV	- - - - - - - - - - - - - - - - - - -		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	WB 11.4	NBT	NB 0	- - - - - - - - - - - - - - - - - - -		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	WB 11.4	NBT	NBN NBRV	- - - - - - - - - - - - - - - - - - -		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	- - - 11.4 B	NBT	NB 0	- - - - - - - - - - - - - - - - - - -		

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations			4†			
Traffic Vol., veh/h	0	33	1249	81	0	0
Future Vol. veh/h	0	33	1249	81	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	Olop -	None	-	None	olop -	
Storage Length		0		NOTICE -		NOHE
Veh in Median Storage		-	0	-		16979
Grade, %	5,# 0		0	-		0
Peak Hour Factor	92	92	92	92	92	92
	92	92	92	92	92	92
Heavy Vehicles, %						
Mvmt Flow	0	36	1358	88	0	0
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	723	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	7.14	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	_	-	_	-		
Follow-up Hdwy		3.92				
Pot Cap-1 Maneuver	0	316	-	-		
Stage 1	0	-		_		
Stage 2	0	-	_	-		
Platoon blocked, %	•					
Mov Cap-1 Maneuver	-	316	_	-		
Mov Cap-2 Maneuver		010				
Stage 1						
Stage 2	-		_			
Stage 2						
Approach	WB		NB			
HCM Control Delay, s	17.8		0			
HCM LOS	С					
		NDT	NDD	MDI 4		
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1		
Capacity (veh/h)		-	-	316		
HCM Lane V/C Ratio		-		0.114		
HCM Control Delay (s))	-	-	17.8		
HCM Lane LOS		-	-	С		
HCM 95th %tile Q(veh	1)	-	-	0.4		

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Existing
Timing Plan: PM

	•	→	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^		7	ተተ _ጉ		٦	f)		Ţ	ĵ»	
Traffic Volume (vph)	83	1577	17	37	1391	28	156	3	45	37	1	90
Future Volume (vph)	83	1577	17	37	1391	28	156	3	45	37	1	90
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	90	1714	18	40	1512	30	170	3	49	40	1	98
Shared Lane Traffic (%)												
Lane Group Flow (vph)	90	1732	0	40	1542	0	170	52	0	40	99	0
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	20.0	63.0		20.0	63.0		29.2	29.2		27.8	27.8	
Total Split (%)	14.3%	45.0%		14.3%	45.0%		20.9%	20.9%		19.9%	19.9%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	None		None	None		None	None		Max	Max	
Act Effct Green (s)	61.1	53.8		55.9	49.1		16.8	16.8		23.8	23.8	
Actuated g/C Ratio	0.52	0.46		0.48	0.42		0.14	0.14		0.20	0.20	
v/c Ratio	0.46	0.74		0.24	0.72		0.67	0.19		0.11	0.25	
Control Delay	22.7	29.0		17.3	30.8		62.6	15.7		45.0	11.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	22.7	29.0		17.3	30.8		62.6	15.7		45.0	11.0	
LOS	С	С		В	С		Е	В		D	В	
Approach Delay		28.7			30.4			51.6			20.8	
Approach LOS		С			С			D			С	
Queue Length 50th (ft)	31	394		14	343		127	2		26	1	
Queue Length 95th (ft)	72	517		34	467		217	41		66	53	
Internal Link Dist (ft)		431			420			314			314	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	294	2620		298	2586		380	383		359	400	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.31	0.66		0.13	0.60		0.45	0.14		0.11	0.25	

Cycle Length: 140
Actuated Cycle Length: 117
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.74
Intersection Signal Delay: 30.5

Intersection LOS: C

01/19/2022 Synchro 10 Report SMN Page 1

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Existing Timing Plan: PM

Intersection Capacity Utilization 61.6% Analysis Period (min) 15 ICU Level of Service B

Splits and Phases: 1: Private Driveway/Site Driveway 1 & Walnut Hill Lane

01/19/2022 Synchro 10 Report SMN Page 2

Intersection							
Int Delay, s/veh	1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7		11	71011)	7	
Traffic Vol. veh/h	30	1636	1417	42	16	26	
Future Vol. veh/h	30	1636	1417	42	16	26	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	150	-		-	0	0	
Veh in Median Storage		0	0	-	0	-	
Grade, %	, π -	0	0		0		
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	33	1778	1540	46	17	28	
MIVINET ION	00	1110	10-10	-10		20	
	Major1		Major2		Minor2		
Conflicting Flow All	1586	0	-	0	2340	793	
Stage 1	-	-	-	-	1563	-	
Stage 2	-	-	-	-	777	-	
Critical Hdwy	5.34	-	-	-	5.74	7.14	
Critical Hdwy Stg 1	-	-	-	-	6.64	-	
Critical Hdwy Stg 2	-	-	-	-	6.04	-	
Follow-up Hdwy	3.12	-	-	-	3.82	3.92	
Pot Cap-1 Maneuver	202	-	-	-	61	284	
Stage 1	-	-	-	-	108	-	
Stage 2	-	-	-	-	376	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	202	-	-	-	51	284	
Mov Cap-2 Maneuver	-	-	-	-	51	-	
Stage 1	-	-	-	-	90	-	
Stage 2	-	-	-	-	376	-	
Annroach	EB		WB		SB		
Approach					53.2		
HCM Control Delay, s	0.5		0				
HCM LOS					F		
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1 S	BLn2
Capacity (veh/h)		202	-	-	-	51	284
HCM Lane V/C Ratio		0.161				0.341	0.1
HCM Control Delay (s)		26.2	-	-	-		19.1
HCM Lane LOS		D				F	C
HCM 95th %tile Q(veh)	1	0.6				1.2	0.3
TIOM JOHN JUNE Q(VEII)		0.0				1.2	0.0

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ				¥	
Traffic Vol, veh/h	64	1675	1337	11	0	144
Future Vol, veh/h	64	1675	1337	11	0	144
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	70	1821	1453	12	0	157
Major/Minor	Major1		Major2		Minor2	
	1453	0				733
Conflicting Flow All	1453	-	-	0	2327 1459	733
Stage 1 Stage 2			-	-	868	-
Critical Hdwy	5.34		-	-	5.74	7.14
	5.34				6.64	7.14
Critical Hdwy Stg 1	-	-	-	-	6.04	-
Critical Hdwy Stg 2						
Follow-up Hdwy	3.12	-	-	-	3.82	3.92
Pot Cap-1 Maneuver	235	_	-	-		312
Stage 1	-	-	-	-	126	-
Stage 2	-	-	-	-	336	-
Platoon blocked, %	005	-	-	-	4.4	312
Mov Cap-1 Maneuver	235	-	-	-	44	
Mov Cap-2 Maneuver	-	-	-	-	44	-
Stage 1	-	-	-	-	88	-
Stage 2	-	-	-	-	336	-
Approach	EB		WB		SB	
HCM Control Delay, s	1		0		27.6	
HCM LOS	•		·		D	
TIOW LOO					U	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		235	-	-	-	312
HCM Lane V/C Ratio		0.296	-	-	-	0.502
HCM Control Delay (s))	26.6	-	-	-	27.6
HCM Lane LOS		D	-	-	-	D
HCM 95th %tile Q(veh	1)	1.2	-	-	-	2.7

Synchro 10 Report Page 1 01/19/2022 SMN

01/19/2022

SMN

Synchro 10 Report Page 2

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	4	
Traffic Vol, veh/h	8	16	6	63	117	5
Future Vol, veh/h	8	16	6	63	117	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	17	7	68	127	5
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	212	130	132	0	IVIAJUIZ	0
Stage 1	130	130	132	-	-	-
Stage 1 Stage 2	82	-		-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	0.22	4.12		-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
			2.218	-	-	
Follow-up Hdwy		920	1453	-	-	-
Pot Cap-1 Maneuver	776			-	-	-
Stage 1	896	-	-	-	-	-
Stage 2	941	-	-	-	-	-
Platoon blocked, %	770	000	4450	-	-	-
Mov Cap-1 Maneuver		920	1453	-	-	-
Mov Cap-2 Maneuver	772	-	-	-	-	-
Stage 1	892	-	-	-	-	-
Stage 2	941	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.3		0.7		0	
HCM LOS	Α					
Minor Lane/Major Mvr	nt	NBL	NDT	EBLn1	SBT SBR	
	III	1453		865		
Capacity (veh/h)		0.004	-	0.03		
HCM Cantral Dalay (a	\		-	9.3		
HCM Control Delay (s)	7.5	0			
HCM Lane LOS	,	A	Α	A		
HCM 95th %tile Q(veh	1)	0	-	0.1		

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	TTDL	7	^	TIDIN	ODL	001
Traffic Vol, veh/h	0	68	761	22	0	0
Future Vol. veh/h	0	68	761	22	0	0
Conflicting Peds, #/hr	-	00	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	Stop -		riee -	None	Stop -	None
		0	-	None -		None -
Storage Length			0			
Veh in Median Storag		-	_	-		16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	74	827	24	0	0
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	426	0	0		
Stage 1	-	-	-	-		
Stage 2		-	-	-		
Critical Hdwy	-	6.94	_	-		
Critical Hdwy Stg 1		-				
Critical Hdwy Stg 2	-	-	_	-		
Follow-up Hdwy	-	3.32		-		
Pot Cap-1 Maneuver	0	577	-	-		
Stage 1	0	-				
Stage 2	0	-	_	-		
Platoon blocked, %	U					
Mov Cap-1 Maneuver		577		_		
Mov Cap-1 Maneuver		-				
Stage 1	-					
Stage 2	-					
Staye 2						
Approach	WB		NB			
HCM Control Delay, s	12.2		0			
HCM LOS	В					
Mineral and Maior Ma		NDT	MDDV	MDI 4		
Minor Lane/Major Mvi	mt	NBT		VBLn1		
Capacity (veh/h)		-	-	577		
HCM Lane V/C Ratio	,	-		0.128		
HCM Control Delay (s	6)	-	-	12.2		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(vel	h)	-	-	0.4		

HCM Control Delay (s)

HCM Lane LOS HCM 95th %tile Q(veh) - - 11.4

- - B - - 0.1 Intersection

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDK	†î>	NDR	ODL	ODI
Traffic Vol, veh/h	0	15	767	13	0	0
Future Vol, veh/h	0	15	767	13	0	0
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	- Otop	None	-		-	None
Storage Length	-	0		-		-
Veh in Median Storag		-	0	_		16979
Grade, %	0, 0	-	0		-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	16	834	14	0	0
	•		001			
	N					
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	424	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	579	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver		579	-	-		
Mov Cap-2 Maneuver		-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s			0			
HCM LOS	В		U			
TIOW LOS	D					
Minor Lane/Major Mvr	mt	NBT	NBR	WBLn1		
Capacity (veh/h)		-	-	579		
HCM Lane V/C Ratio		-	-	0.028		
LIOM Control Delay /a				44.4		

Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ተ ተጮ			
Traffic Vol, veh/h	0	45	1761	96	0	0
Future Vol, veh/h	0	45	1761	96	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-	0	-		16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	49	1914	104	0	0
Major/Minor I	Minor1	ı	Major1			
Conflicting Flow All		1009	0	0		
Stage 1	-	-	-	-		
Stage 2						
Critical Hdwy	-	7.14	_	_		
Critical Hdwy Stg 1	-	-				
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.92				
Pot Cap-1 Maneuver	0	205	_	_		
Stage 1	0	200	-			
Stage 2	0	_		_		
Platoon blocked, %	U		-			
Mov Cap-1 Maneuver	-	205		_		
Mov Cap-2 Maneuver		200	-			
Stage 1	-	-				
Stage 2						
Stage 2						
Approach	WB		NB			
HCM Control Delay, s	28		0			
HCM LOS	D					
Minor Lane/Major Mvm	t	NBT	NRRV	VBLn1		
Capacity (veh/h)		1401	- INDIX	205		
HCM Lane V/C Ratio				0.239		
		-		28		
HCM Control Delay (s)		-	-			
HCM Lane LOS		-	-	D		
HCM 95th %tile Q(veh)		-	-	0.9		

 01/19/2022
 Synchro 10 Report

 SMN
 Page 5

01/19/2022 SMN Synchro 10 Report Page 6

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

No Build Timing Plan: AM

	•	-	\rightarrow	•	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተ ተጉ		ሻ	ተተ _ጮ		ሻ	4		ሻ	^	
Traffic Volume (vph)	57	1475	108	40	1469	26	24	0	11	23	5	57
Future Volume (vph)	57	1475	108	40	1469	26	24	0	11	23	5	57
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	62	1603	117	43	1597	28	26	0	12	25	5	62
Shared Lane Traffic (%)												
Lane Group Flow (vph)	62	1720	0	43	1625	0	26	12	0	25	67	0
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	12.0	72.0		12.0	72.0		18.0	18.0		18.0	18.0	
Total Split (%)	10.0%	60.0%		10.0%	60.0%		15.0%	15.0%		15.0%	15.0%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	None		None	None		None	None		Max	Max	
Act Effct Green (s)	50.2	46.5		48.5	43.6		7.3	7.3		19.5	19.5	
Actuated g/C Ratio	0.57	0.53		0.55	0.50		0.08	0.08		0.22	0.22	
v/c Ratio	0.28	0.64		0.20	0.65		0.18	0.03		0.06	0.17	
Control Delay	10.8	16.8		9.8	18.0		49.2	0.2		38.2	13.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.8	16.8		9.8	18.0		49.2	0.2		38.2	13.3	
LOS	В	В		Α	В		D	Α		D	В	
Approach Delay		16.6			17.8			33.7			20.1	
Approach LOS		В			В			С			С	
Queue Length 50th (ft)	14	283		10	265		15	0		13	2	
Queue Length 95th (ft)	32	357		24	331		48	0		43	44	
Internal Link Dist (ft)		431			420			314			314	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	240	3926		241	3952		295	459		393	404	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.26	0.44		0.18	0.41		0.09	0.03		0.06	0.17	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 87.8												
Natural Cycle: 90												

01/19/2022 Synchro 10 Report SMN Page 1

Intersection LOS: B

Natural Cycle: 90

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.65

Intersection Signal Delay: 17.4

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

No Build Timing Plan: AM

Intersection							
Int Delay, s/veh	0.4						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	CDL T			WDN	SDL T	JDK 7	
Traffic Vol, veh/h	1 8	TTT 1391	1531	31	"1	10	
Future Vol. veh/h	18	1391	1531	31	5	10	
Conflicting Peds, #/hi		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	150	-		-	0	0	
Veh in Median Storag		0	0	-	0	-	
Grade, %	-	0	0		0		
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	20	1512	1664	34	5	11	
Major/Minor	Major1		Anior?		/linor?		
Major/Minor	Major1		Major2		Minor2	0.40	
Conflicting Flow All	1698	0	-	0	2326	849	
Stage 1	-	-	-	-	1681	-	
Stage 2 Critical Hdwy	5.34	-	-	-	645 5.74	7.14	
Critical Howy Critical Howy Stg 1	5.34	-	-		6.64	7.14	
Critical Hdwy Stg 1 Critical Hdwy Stg 2	-	-	_	-	6.04	-	
Follow-up Hdwy	3.12	-	-		3.82	3.92	
Pot Cap-1 Maneuver		-	-	-	3.82	3.92	
Stage 1	1/8		-	-	91	261	
Stage 1	-	-	-	-	441	-	
Platoon blocked. %	-	-	-		441	-	
Mov Cap-1 Maneuve	r 178	-	_	-	55	261	
		-	-	-	55	201	
Mov Cap-2 Maneuve Stage 1	r -	-	-	-	81	-	
Stage 1 Stage 2	-		-		441	-	
Staye 2		-	_	-	441		
Approach	EB		WB		SB		
HCM Control Delay,	s 0.4		0		38.8		
HCM LOS					Е		
Minor Lane/Major Mv	rmt	EBL	EBT	WBT	WRR	SBLn1:	SRI n2
Capacity (veh/h)	IIIC	178	LDI	-	- AADIK	55	261
HCM Lane V/C Ratio		0.11				0.099	
HCM Control Delay (27.7		-	-	77.5	19.4
HCM Lane LOS	3)	21.1 D		-		77.5	19.4 C
HCM 95th %tile Q(ve	ıh)	0.4	-	-	-	0.3	0.1
TION SOUL WILL CON	11)	0.4	_	-	_	0.3	0.1

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^ ^	444	,,,,,	Y	05.1
Traffic Vol, veh/h	64	1343	1494	9	0	64
Future Vol. veh/h	64	1343	1494	9	0	64
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	150	-		-	0	-
Veh in Median Storage,		0	0	_	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	70	1460	1624	10	0	70
WWW.CT IOW	10	1700	1024	10	U	70
	/lajor1		Major2		Minor2	
Conflicting Flow All	1624	0	-	0	2353	817
Stage 1	-	-	-	-	1629	-
Stage 2	-	-	-	-	724	-
Critical Hdwy	5.34	-	-	-	5.74	7.14
Critical Hdwy Stg 1	-	-	-	-	6.64	-
Critical Hdwy Stg 2	-	-	-	-	6.04	-
Follow-up Hdwy	3.12	-	-	-	3.82	3.92
Pot Cap-1 Maneuver	193	-	-	-	60	274
Stage 1	-	-	-	-	98	-
Stage 2	-	-	-	-	401	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	193	-	-	-	38	274
Mov Cap-2 Maneuver		-		-	38	-
Stage 1	-	-	-	-	62	-
Stage 2				-	401	-
Olago 2						
			WD		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	1.5		0		22.6	
HCM LOS					С	
Minor Lane/Major Mvmt	t	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		193			-	274
HCM Lane V/C Ratio		0.36				0.254
HCM Control Delay (s)		33.8	_	_	_	22.6
HCM Lane LOS		D				C
HCM 95th %tile Q(veh)		1.5		_		1
HOW JOHN JOHN Q(VEH)		1.3				

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	4	
Traffic Vol, veh/h	6	11	9	49	54	
Future Vol, veh/h	6	11	9	49	54	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	12	10	53	59	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	139	66	72	0		0
	66	- 00	12	-	-	-
Stage 1	73					
Stage 2	6.42	6 22	4.12	-	-	-
Critical Hdwy		6.22			-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	- 0.040	- 0.40	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	854	998	1528	-	-	-
Stage 1	957	-	-	-	-	-
Stage 2	950	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	848	998	1528	-	-	-
Mov Cap-2 Maneuver	848	-	-	-	-	-
Stage 1	950	-	-	-	-	-
Stage 2	950	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.9		1.1		0	
HCM LOS	Α.		1.1		U	
I IOWI LOG	А					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT SBR	
Capacity (veh/h)		1528	-	939		
HCM Lane V/C Ratio		0.006	-	0.02		
HCM Control Delay (s))	7.4	0	8.9		
HCM Lane LOS		Α	Α	Α		
HCM 95th %tile Q(veh)	0	-	0.1		

Movement	Intersection							
Lane Configurations	Int Delay, s/veh	0.6						
Lane Configurations	Movement	WBI	WBR	NBT	NBR	SBI	SBT	ſ
Traffic Vol, veh/h					,	002	051	
Future Vol, veh/h Conflicting Peds, #/hr Sign Control Stop Stop RT Channelized None - None - None - None Storage Length - 0 - 0 16979 Grade, % 0 - 0 - 0 - 0 Peak Hour Factor 92 92 92 92 92 Peak You'r Flow Major/Minor Minor1 Major/Minor Minor1 Major/Minor Minor1 Major/Minor Minor1 Major/Minor Minor1 Major/Minor Minor1 Conflicting Flow All Stage 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Stage 1 Stage 1 0		Λ			131	Λ	Λ)
Conflicting Peds, #/hr								
Sign Control Stop Stop Free Free Stop Stop						-	-	-
RT Channelized		_		_	_	_		
Storage Length								
Veh in Median Storage, # 0 - 0 - 16979 Grade, % 0 - 0 - 0 - 0 Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2								-
Grade, % 0 - 0 - 0 - 0 Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 2 2 2 2 2 Mvmt Flow 0 49 763 142 0 0 Major/Minor Minor1 Major1 Conflicting Flow All		.# 0		0	-	_	16979)
Peak Hour Factor 92			-					
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	,							
Munt Flow 0 49 763 142 0 0 Major/Minor Minor1 Major1 Conflicting Flow All - 453 0 0 Stage 1 - - - - Stage 2 - - - - Critical Hdwy Stg 1 - - - Critical Hdwy Stg 2 - - - - Follow-up Hdwy - 3.32 - - - Follow-up Hdwy - 3.32 -								
Major/Minor Minor1 Major1 Conflicting Flow All - 453 0 0 Stage 1 - - - - Stage 2 - - - - Critical Hdwy 6.94 - - - Critical Hdwy Stg 1 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Conflicting Flow All								
Conflicting Flow All - 453 0 0 Stage 1 Stage 2 Critical Hdwy - 6.94 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Critical Hdwy Stg 2 Follow-up Hdwy - 3.32 Follow-up Hdwy - 3.32 Follow-up Hdwy - 554 Stage 1 0 Stage 2 0 Stage 2 0 Platon blocked, % Mov Cap-1 Maneuver Mov Cap-1 Maneuver Stage 1 Stage 1 Stage 1 Stage 2 Stage 2 Stage 1 Stage 2 Stage 1 Stage 1 Stage 1 Stage 2 Stage 1 Stage 1 Stage 1 Stage 2 Stage 1 Stage 2 Stage 2 Stage 3 Stage 3 Stage 4 Stage 4 Stage 5 Stage 6 Stage 7 Stage 7 Stage 8 Stage 9 -	Maia-Mina-	Min4		4-14				
Stage 1								
Stage 2					-			
Critical Hdwy - 6.94 - - Critical Hdwy Stg 1 - - - - Critical Hdwy Stg 2 - - - - Critical Hdwy Stg 2 - - - - - - Critical Hdwy -<			_					
Critical Hdwy Stg 1 - - - - Critical Hdwy Stg 2 - - - - Follow-up Hdwy - 3.32 - - Pot Cap-1 Maneuver 0 554 - - Stage 1 0 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver - - - Mov Cap-2 Maneuver - - - Stage 1 - - - Stage 2 - - - Approach WB NB HCM Control Delay, s 12.1 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 554 HCM Lane V/C Ratio 0.088 HCM Control Delay (s) 12.1 HCM Lane LOS B								
Critical Hdwy Stg 2 - - - Follow-up Hdwy - 3.32 - - Pot Cap-1 Maneuver 0 554 - - Stage 1 0 - - - Stage 2 0 - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver - 554 - - Stage 1 - - - - Stage 2 - - - - Approach WB NB HCM Control Delay, s 12.1 0 HCM Control Delay, s 12.1 0 HCM Capacity (veh/h) - - 554 HCM Cantrol Delay (s) - - 0.088 HCM Control Delay (s) - - 12.1 HCM Lane V/C Ratio - - 0.088 HCM Cantrol Delay (s) - - 12.1 HCM Lane V/C Ratio - - 0.088					_			
Follow-up Hdwy - 3.32 Pot Cap-1 Maneuver 0 554 Stage 1 0 Stage 2 0 Platoon blocked, % Mov Cap-1 Maneuver - 554 Mov Cap-2 Maneuver - 554 Stage 1 Stage 2 Stage 2 5 Mov Cap-2 Maneuver - 554 Mov Cap-2 Maneuver - 554 Stage 1 Stage 2 5 Minor Lane/Major Mvmt NB NB HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 554 HCM Lane V/C Ratio - 0.088 HCM Control Delay (s) - 12.1 HCM Los - B			-	-	-			
Pot Cap-1 Maneuver			-	-	-			
Stage 1								
Stage 2				_				
Platoon blocked, % Mov Cap-1 Maneuver - 554 Mov Cap-2 Maneuver Stage 1 Stage 2 Approach WB NB HCM Control Delay, s 12.1 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 554 HCM Lane V/C Ratio - 0.088 HCM Control Delay (s) - 12.1 HCM Lane LOS - B		-						
Mov Cap-1 Maneuver - 554 - - Mov Cap-2 Maneuver -		0	-	_				
Mov Cap-2 Maneuver -			FF.4	-				
Stage 1				-	_			
Stage 2			-	-	-			
Approach WB NB HCM Control Delay, s 12.1 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 554 HCM Lane V/C Ratio - 0.088 HCM Control Delay (s) - 12.1 HCM Lane LOS - B			-	-	-			
HCM Control Delay, s 12.1 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 554 HCM Lane V/C Ratio - 0.088 HCM Control Delay (s) - 12.1 HCM Lane LOS - B	Stage 2	-	-	-	-			
HCM Control Delay, s 12.1 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 Capacity (veh/h) - 554 HCM Lane V/C Ratio - 0.088 HCM Control Delay (s) - 12.1 HCM Lane LOS - B								
HCM LOS B	Approach	WB		NB				
HCM LOS B	HCM Control Delay, s	12.1		0				
Capacity (veh/h) - - 554 HCM Lane V/C Ratio - - 0.088 HCM Control Delay (s) - - 12.1 HCM Lane LOS - B		В						
Capacity (veh/h) - - 554 HCM Lane V/C Ratio - - 0.088 HCM Control Delay (s) - - 12.1 HCM Lane LOS - B								
Capacity (veh/h) - - 554 HCM Lane V/C Ratio - - 0.088 HCM Control Delay (s) - - 12.1 HCM Lane LOS - B	Miner Lone/Major Mum		NDT	NDDV	VDI 51			
HCM Lane V/C Ratio 0.088 HCM Control Delay (s) - 12.1 HCM Lane LOS - B		IL		INDRV				
HCM Control Delay (s) 12.1 HCM Lane LOS - B				-				
HCM Lane LOS B								
		,						
HCM 95th %tile Q(veh) 0.3	HUM 95th %tile Q(veh)	-	-	0.3			

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	۸ß			
Traffic Vol., veh/h	0	4	843	18	0	0
Future Vol, veh/h	0	4	843	18	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	16979
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	4	916	20	0	0
Major/Minor	Minor1		Aniar1			
			Major1			
Conflicting Flow All	-	468	0	0		
Stage 1	-	-	-	-		
Stage 2	-	- 0.04	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	542	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver	-	542	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s	11.7		0			
HCM LOS	В		U			
TIOM EGG						
Minor Lane/Major Mvm	ıt	NBT	NBR	VBLn1		
Capacity (veh/h)		-	-	542		
HCM Lane V/C Ratio		-	-	0.000		
HCM Control Delay (s)		-	-	11.7		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh))	-	-	0		
,						

Intersection							
Int Delay, s/veh	0.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7					
Traffic Vol, veh/h	0	36	1352	88	0	0	
Future Vol. veh/h	0	36	1352	88	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-		
Storage Length	-	0		-		-	
Veh in Median Storage	.# 0	-	0	-	_	16979	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	0	39	1470	96	0	0	
	- 0	- 00	1110	00	0	- 0	
	Minor1		Major1				
Conflicting Flow All	-	783	0	0			
Stage 1	-	-	-	-			
Stage 2	-	-	-	-			
Critical Hdwy	-	7.14	-	-			
Critical Hdwy Stg 1	-	-	-	-			
Critical Hdwy Stg 2	-	-	-	-			
Follow-up Hdwy	-	3.92	-	-			
Pot Cap-1 Maneuver	0	289	-	-			
Stage 1	0	-	-	-			
Stage 2	0	-	-	-			
Platoon blocked, %			-	-			
Mov Cap-1 Maneuver	-	289	-	-			
Mov Cap-2 Maneuver	-	-	-	-			
Stage 1	-	-	-	-			
Stage 2	-	-	-	-			
Approach	WB		NB				
HCM Control Delay, s	19.4		0				
HCM LOS	С						
	J						
Minor Lane/Major Mvm	nt	NBT	NRRI	VBLn1			
Capacity (veh/h)		-	-	289			
HCM Lane V/C Ratio				0.135			
HCM Control Delay (s)		-	_	19.4			
HCM Lane LOS				C			
HCM 95th %tile Q(veh)	١			0.5			
TIOW JOHN JOHN Q(VEH)	1			0.0			

01/19/2022 SMN Synchro 10 Report Page 6

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

No Build Timing Plan: PM

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑₽		"	ተ ተጉ		"	f)		- ሻ	ĵ.	
Traffic Volume (vph)	90	1707	18	40	1506	30	169	3	49	40	1	97
Future Volume (vph)	90	1707	18	40	1506	30	169	3	49	40	1	97
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	98	1855	20	43	1637	33	184	3	53	43	1	105
Shared Lane Traffic (%)												
Lane Group Flow (vph)	98	1875	0	43	1670	0	184	56	0	43	106	0
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	20.0	63.0		20.0	63.0		29.2	29.2		27.8	27.8	
Total Split (%)	14.3%	45.0%		14.3%	45.0%		20.9%	20.9%		19.9%	19.9%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	None		None	None		None	None		Max	Max	
Act Effct Green (s)	65.3	57.7		59.7	52.8		17.8	17.8		23.7	23.7	
Actuated g/C Ratio	0.54	0.47		0.49	0.43		0.15	0.15		0.19	0.19	
v/c Ratio	0.51	0.78		0.27	0.76		0.71	0.20		0.13	0.27	
Control Delay	26.2	30.5		18.0	32.2		66.6	15.4		46.9	10.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	26.2	30.5		18.0	32.2		66.6	15.4		46.9	10.9	
LOS	С	С		В	С		Е	В		D	В	
Approach Delay		30.3			31.8			54.7			21.3	
Approach LOS		С			С			D			С	
Queue Length 50th (ft)	35	456		15	394		143	2		29	1	
Queue Length 95th (ft)	86	582		36	527		236	42		70	54	
Internal Link Dist (ft)		431			420			314			314	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	282	2532		285	2472		364	370		343	392	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.35	0.74		0.15	0.68		0.51	0.15		0.13	0.27	
Intersection Summary												
Cycle Length: 140												
Actuated Cycle Length: 121	1.9											
Natural Cycle: 90												
Control Type: Actuated-Und	coordinated											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 3	32.1			lr	ntersection	LOS: C						

ノーティーペイ イァト↓

02/28/2022 Synchro 10 Report SMN Page 1

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

No Build Timing Plan: PM

Intersection Capacity	y Utilization 64.8%	ICU Le	evel of Service C	
Analysis Period (min	1) 15			
Splits and Phases:	1: Private Driveway/Site D	riveway 1 & Walnut Hill	Lane	
√ 1 _{Ø2}	№ Ø6	√ Ø3	♣ 04	
29.2 s	27.8 s	20 s	63s	7
		≯ Ø7	₩ øs	
		20 s	63 s	

02/28/2022 Synchro 10 Report SMN Page 2

Intersection							
Int Delay, s/veh	1.3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	ተተተ			ች	7	
Traffic Vol, veh/h	32	1771	1534	45	17	28	
Future Vol. veh/h	32	1771	1534	45	17	28	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	Olup -	None	
Storage Length	150	-		INUITE -	0	0	
Veh in Median Storage		0	0	-	0	-	
Grade. %	e,# - -	0	0	-	0		
Peak Hour Factor	92	92	92	92	92	92	
	92	92	92	92	92	92	
Heavy Vehicles, %				49		30	
Mvmt Flow	35	1925	1667	49	18	30	
Major/Minor	Major1		Major2	1	Minor2		
Conflicting Flow All	1716	0	-	0	2532	858	
Stage 1	-	-	-	-	1692	-	
Stage 2	-	-	-	-	840	-	
Critical Hdwy	5.34	-	-	-	5.74	7.14	
Critical Hdwy Stg 1	-	-	-	-	6.64	-	
Critical Hdwy Stg 2	-	-	-	-	6.04	-	
Follow-up Hdwy	3.12	-			3.82	3.92	
Pot Cap-1 Maneuver	174	_	-	-	48	258	
Stage 1					90	-	
Stage 2	_		-	_	348		
Platoon blocked, %					0.10		
Mov Cap-1 Maneuver	174			_	38	258	
Mov Cap-1 Maneuver	- 174				38	230	
Stage 1	_	-	-	-	72	-	
Stage 2					348	-	
Stage 2		-	-	-	348	-	
Approach	EB		WB		SB		
HCM Control Delay, s	0.5		0		76.7		
HCM LOS					F		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WRP	SBLn1	SRI n2
	nt.	174	EDI	וטוו	אטוע	38	258
Capacity (veh/h)		0.2		-	-	0.486	
HCM Central Delay (١		-	-		168.8	
HCM Control Delay (s)	30.8	-	-	-		20.8
HCM Lane LOS	`	D	-	-	-	F	C
HCM 95th %tile Q(veh	1)	0.7	-	-	-	1.7	0.4

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			ተ ተጉ		W	
Traffic Vol., veh/h	69	1813	1447	12	0	156
Future Vol. veh/h	69	1813	1447	12	0	156
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	75	1971	1573	13	0	170
Major/Minor	Major1		Majara		Ainar?	
	Major1		Major2		Minor2	=00
Conflicting Flow All	1573	0	-	0	2518	793
Stage 1	-	-	-	-	1580	-
Stage 2		-	-	-	938	7.44
Critical Hdwy	5.34	-	-	-	5.74	7.14
Critical Hdwy Stg 1	-	-	-	-	6.64	-
Critical Hdwy Stg 2	-	-	-	-	6.04	-
Follow-up Hdwy	3.12	-	-	-	3.82	3.92
Pot Cap-1 Maneuver	205	-	-	-	49	284
Stage 1	-	-	-	-	105	-
Stage 2	-	-	-	-	308	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	205	-	-	-	31	284
Mov Cap-2 Maneuver	-	-	-	-	31	-
Stage 1	-	-	-	-	67	-
Stage 2	-	-	-	-	308	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.2		0		34.8	
HCM LOS	1.2		U		D D	
TIGIVI LOG					U	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	
Capacity (veh/h)		205	-	-	-	284
HCM Lane V/C Ratio		0.366	-	-	-	0.597
HCM Control Delay (s)		32.4	-	-	-	34.8
HCM Lane LOS		D	-	-	-	D
HCM 95th %tile Q(veh))	1.6	-	-	-	3.6

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	4	
Traffic Vol, veh/h	9	17	6	68	127	5
Future Vol. veh/h	9	17	6	68	127	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	-	-	-	0	0	-
Grade. %	0	-	-	0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	10	18	7	74	138	5
	.0	.0	'		100	
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	229	141	143	0	- Wajoiz	0
Stage 1	141	141	140	-	-	-
Stage 2	88					
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	0.22	7.12			
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy		3.318	2.218			
Pot Cap-1 Maneuver	759	907	1440			
Stage 1	886	901	1440			
Stage 2	935	-			-	-
Platoon blocked, %	300					
Mov Cap-1 Maneuver	755	907	1440	-	-	-
	755	907	1440			
Mov Cap-2 Maneuver	882	-	-	-	-	-
Stage 1		_	-	-	-	-
Stage 2	935	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		0.6		0	
HCM LOS	Α					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT SBR	
Capacity (veh/h)		1440	-	848		
HCM Lane V/C Ratio		0.005		0.033		
HCM Control Delay (s)	١	7.5	0	9.4		
HCM Lane LOS		7.5 A	A	3.4 A		
HCM 95th %tile Q(veh	۸	0	А	0.1		
TOTAL SOLLI WILLE CA (VELL)	U	_	U. I		

intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^			
Traffic Vol., veh/h	0	74	824	24	0	0
Future Vol. veh/h	0	74	824	24	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	olop -	None	-	None	Olop -	
Storage Length		0		INUITE		NUITE
Veh in Median Storage		-	0	-	-	0
Grade, %	0		0			0
Peak Hour Factor	92	92	92	92	92	92
	92	2	2	2	2	2
Heavy Vehicles, % Mymt Flow	0	80	896	26	0	0
WIVITI FIOW	U	80	890	20	U	U
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	461	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	547	_	-		
Stage 1	0	-	-	-		
Stage 2	0	-	_	-		
Platoon blocked, %	-		-	-		
Mov Cap-1 Maneuver	-	547	-	-		
Mov Cap-2 Maneuver		-				
Stage 1	_	-	_	-		
Stage 2		-				
Olage 2						
Approach	WB		NB			
HCM Control Delay, s	12.7		0			
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT	NRRV	VBLn1		
Capacity (veh/h)		-	-	547		
HCM Lane V/C Ratio		-		0.147		
HCM Control Delay (s)	١	_	_	12.7		
HCM Lane LOS				12.7 B		
HCM 95th %tile Q(veh	١	-	-	0.5		
HOW YOUR WILL WILL)	-		0.0		

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NDT	NBR	CDI	CDT
	WBL		NBT	INBR	SBL	SBT
Lane Configurations	•	7	†		•	
Traffic Vol, veh/h	0	16	830	14	0	0
Future Vol, veh/h	0	16	830	14	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	17	902	15	0	0
	-					
	Minor1		Major1			
Conflicting Flow All	-	459	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	549	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	_		
Platoon blocked, %	-		-	-		
Mov Cap-1 Maneuver	_	549		-		
Mov Cap-2 Maneuver		-				
Stage 1	-					
Stage 2		-				
Stage 2			-			
Approach	WB		NB			
HCM Control Delay, s	11.8		0			
HCM LOS	В					
110.11.200						
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1		
Capacity (veh/h)		-	-	549		
HCM Lane V/C Ratio		-	-	0.032		
HCM Control Delay (s)		-	-	11.8		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)	-	-	0.1		
0001 /0010 3(1011	,			0.1		

ntersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	TIDL	7	11	ADIN	ODL	001
Traffic Vol, veh/h	0	49	1906	104	0	0
Future Vol. veh/h	0	49	1906	104	0	0
Conflicting Peds, #/hr		49	1906	0	0	0
	_	Stop	Free	Free	Stop	Stop
Sign Control RT Channelized	Stop	None	Free -	None		None
					-	
Storage Length	- " 0	0	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	53	2072	113	0	0
Major/Minor	Minor1		Major1			
		1093	0	0		
Conflicting Flow All	-	1093	-	-		
Stage 1		_				
Stage 2	-		-	-		
Critical Hdwy	-	7.14	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.92	-	-		
Pot Cap-1 Maneuver	0	180	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver		180	_	_		
Mov Cap-2 Maneuver		-				
Stage 1	_					
Stage 2	-			-		
Stage 2			_			
Approach	WB		NB			
HCM Control Delay, s	33.2		0			
HCM LOS	D					
		NDT	NDDV	VDI 4		
Minor Lane/Major Mvi	mt	NBT	NBRV			
Capacity (veh/h)		-	-	180		
HCM Lane V/C Ratio		-	-	0.296		
HCM Control Delay (s	s)	-	-	33.2		
HCM Lane LOS		-	-	D		
HCM 95th %tile Q(vel	h)	-	-	1.2		
	,					

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Build Timing Plan: AM

	•	→	\rightarrow	•	←	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† †		7	ተተ _ጉ		7	f)		, j	ĵ»	
Traffic Volume (vph)	61	1479	108	46	1490	70	24	0	11	40	5	102
Future Volume (vph)	61	1479	108	46	1490	70	24	0	11	40	5	102
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	66	1608	117	50	1620	76	26	0	12	43	5	111
Shared Lane Traffic (%)												
Lane Group Flow (vph)	66	1725	0	50	1696	0	26	12	0	43	116	0
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	12.0	72.0		12.0	72.0		18.0	18.0		18.0	18.0	
Total Split (%)	10.0%	60.0%		10.0%	60.0%		15.0%	15.0%		15.0%	15.0%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	None		None	None		None	None		Max	Max	
Act Effct Green (s)	50.9	47.2		49.4	44.4		7.3	7.3		19.5	19.5	
Actuated g/C Ratio	0.57	0.53		0.56	0.50		0.08	0.08		0.22	0.22	
v/c Ratio	0.30	0.64		0.23	0.67		0.18	0.04		0.11	0.27	
Control Delay	11.1	16.8		10.2	18.4		49.4	0.2		38.2	11.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	11.1	16.8		10.2	18.4		49.4	0.2		38.2	11.1	
LOS	В	В		В	В		D	Α		D	В	
Approach Delay		16.6			18.1			33.9			18.5	
Approach LOS		В			В			С			В	
Queue Length 50th (ft)	15	286		12	282		15	0		22	3	
Queue Length 95th (ft)	33	358		27	350		48	0		63	56	
Internal Link Dist (ft)		431			420			314			314	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	238	3887		239	3899		292	438		390	437	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.44		0.21	0.43		0.09	0.03		0.11	0.27	

itersection Summary

Cycle Length: 120
Actuated Cycle Length: 88.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.67

Intersection LOS: B Intersection Signal Delay: 17.6

03/01/2022 Synchro 10 Report SMN Page 1

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Build Timing Plan: AM

Intersection Capacity Utilization 55.3% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Private Driveway/Site Driveway 1 & Walnut Hill Lane √I_{Ø2} ÿ3

₩ Ø8

03/01/2022 Synchro 10 Report SMN Page 2

Intersection							
Int Delay, s/veh	1.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		^	ተተኈ			- 7	
Traffic Vol, veh/h	22	1408	1574	65	27	37	
Future Vol, veh/h	22	1408	1574	65	27	37	
Conflicting Peds, #/hr		0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-		-	None	
Storage Length	150	-	-	-	0	0	
Veh in Median Storag	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	24	1530	1711	71	29	40	
Major/Minor	Major4	_	Majara	_	Minor2		
Major/Minor	Major1		Major2			001	
Conflicting Flow All	1782	0	-	0	2407	891	
Stage 1	-	-	-	-		-	
Stage 2	-	-	-	-	660		
Critical Hdwy	5.34	-	-	-	5.74	7.14	
Critical Hdwy Stg 1	-	-	-	-	6.64	-	
Critical Hdwy Stg 2	-	-	-	-	6.04	-	
Follow-up Hdwy	3.12	-	-	-	3.82	3.92	
Pot Cap-1 Maneuver	161	-	-	-	56	245	
Stage 1	-	-	-	-	83	-	
Stage 2	-	-	-	-	433	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver		-	-	-	48	245	
Mov Cap-2 Maneuver	-	-	-	-	48	-	
Stage 1	-	-	-	-	71	-	
Stage 2	-	-	-	-	433	-	
Annroach	EB		WB		SB		
Approach			0		80.9		
HCM Control Delay, s	0.5		U				
HCM LOS					F		
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)		161	-	_	-	48	245
HCM Lane V/C Ratio		0.149				0.611	
HCM Control Delay (s	()	31.2	-		-	160.7	22.6
HCM Lane LOS	')	J1.2				100.7 F	22.0 C
HCM 95th %tile Q(vel	2)	0.5				2.4	0.6
TION SOUL WILL CLASS	1)	0.5	_	-	_	2.4	0.0

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*		^^		¥	
Traffic Vol, veh/h	64	1382	1556	9	0	79
Future Vol, veh/h	64	1382	1556	9	0	79
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		Yield	-	None
Storage Length	150	-		-	0	-
Veh in Median Storage,		0	0	_	0	-
Grade, %		0	0		0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	70	1502	1691	10	0	86
WWITETIOW	10	1302	1031	10	U	00
Major/Minor N	1ajor1	- 1	Major2	N	/linor2	
Conflicting Flow All	1691	0	-	0	2437	851
Stage 1	-	-	-	-	1696	-
Stage 2	-	-	-	-	741	-
Critical Hdwy	5.34	-	-	-	5.74	7.14
Critical Hdwy Stg 1	-	-	-	-	6.64	-
Critical Hdwy Stg 2	-	-	-	-	6.04	-
Follow-up Hdwy	3.12	-	-	-	3.82	3.92
Pot Cap-1 Maneuver	179	_	_	_	54	260
Stage 1	-	-	-	-	89	
Stage 2	-	_	_	_	393	-
Platoon blocked. %		-		-	000	
Mov Cap-1 Maneuver	179	_	_	_	33	260
Mov Cap-2 Maneuver	- 175	-			33	200
Stage 1			-	-	54	
					393	-
Stage 2	-	_	-	-	393	-
Approach	EB		WB		SB	
	EB		WB 0		SB 25.5	
HCM Control Delay, s						
					25.5	
HCM Control Delay, s HCM LOS	1.7		0		25.5 D	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	1.7	EBL	0 EBT	WBT	25.5 D	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	1.7	179	0	WBT_	25.5 D	260
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	1.7	179 0.389	0 EBT -	-	25.5 D WBR :	260 0.33
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	1.7	179 0.389 37.4	0 EBT - -	-	25.5 D WBR :	260 0.33 25.5
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	1.7	179 0.389	0 EBT -	-	25.5 D WBR :	260 0.33

1.4						
	FRP	NRI	NRT	Q.	RT .	SBR
	LDI	HUL				JUN
	11	٥				12
						12
-		-		,		0
				Fre	-	Free
				110		None
						-
-						_
- /						
-			-	(92
				•		2
						13
- 1	12	10	55		10	13
				Majo	r2	
155	82	88	0		-	0
82	-	-	-		-	-
73	-	-	-		-	-
6.42	6.22	4.12	-		-	-
5.42	-	-	-		-	-
5.42	-	-	-		-	-
3.518	3.318	2.218	-		-	-
836	978	1508	-		-	-
941	-	-	-		-	-
950	-	-	-		-	-
			-		-	-
830	978	1508	-		-	-
	-	-			-	-
	-	-	-		-	-
	-		-		-	-
000						
EB		NP		c	SR	
		1.1			U	
А						
nt	NBL	NBT		SBT SE	3R	
	1508	-	920	-	-	
	0.006	-	0.02	-	-	
)	7.4	0	9	-	-	
	Α	Α	Α	-	-	
1)	0	-	0.1	-	-	
)	EBL	BBL BBR BBR	BBL BBR NBL NBL	BBL BBR NBL NBT	BIL BIR NBL NBT SI	BBL BBR NBL NBT SBT NBT

ntersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	TTUL	7	†	HUIN	ODL	ושט
Traffic Vol, veh/h	0	45	716	131	0	0
Future Vol. veh/h	0	45	716	131	0	0
		45	7 10	0	0	0
Conflicting Peds, #/hr	-		-	-	_	
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	49	778	142	0	0
Manina/Mainana	Minad		A-:4			
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	460	0	0		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	-	6.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.32	-	-		
Pot Cap-1 Maneuver	0	548	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %	-		-			
Mov Cap-1 Maneuver	-	548	_	_		
Mov Cap-2 Maneuver		-				
Stage 1	-					
				-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s	12.2		0			
HCM LOS	В					
110111 200						
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1		
Capacity (veh/h)		-	-	548		
HCM Lane V/C Ratio		-	-	0.089		
HCM Control Delay (s	5)	-	-	12.2		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh	1)	-	-	0.3		
	,					

SMN

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDK.		ווטוו	ODL	ועט
	^	_	^	00	^	^
Traffic Vol, veh/h	0	18	843	96	0	0
Future Vol, veh/h	0	18	843	96 0	0	0
Conflicting Peds, #/hr			0		O Cton	-
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	- 4 0	0	-	-	-	-
Veh in Median Storag			0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	20	916	104	0	0
Major/Minor	Minor1	N	Major1			
Conflicting Flow All	-	510	0	0		
Stage 1	_	-	-	-		
Stage 2	-	-	-	-		
Critical Hdwy	_	6.94	-			
Critical Hdwy Stg 1	-	-				
Critical Hdwy Stg 2	-	-	-			
Follow-up Hdwy		3.32		-		
Pot Cap-1 Maneuver	0	509	-			
Stage 1	0	509		-		
Stage 2	0	-				
	U	-		-		
Platoon blocked, %		500	-			
Mov Cap-1 Maneuver		509	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s			0			
HCM LOS	12.4		U			
I IOW LOG	D					
N. 1 (N. 1 N.		NDT	NDD	MDI 4		
Minor Lane/Major Mvr	nt	NBT		VBLn1		
Capacity (veh/h)		-	-	509		
HCM Lane V/C Ratio		-		0.038		
HCM Control Delay (s)	-	-	12.4		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh	۱)	-	-	0.1		

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	11		UDL	051
Traffic Vol., veh/h	0	67	1435	229	0	0
Future Vol. veh/h	0	67	1435	229	0	0
Conflicting Peds, #/hr	-	0	1435	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	Slop -		riee -	None	Stop -	None
		None 0				
Storage Length	- 4 0	-	-	-	-	-
Veh in Median Storag			0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	73	1560	249	0	0
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	905	0	0		
Stage 1	_	-	-	-		
Stage 2			-			
Critical Hdwy	_	7.14		_		
Critical Hdwy Stg 1		7.17	-			
Critical Hdwy Stg 2		-				
	-	3.92		-		
Follow-up Hdwy		240	-	-		
Pot Cap-1 Maneuver	0		-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %		0.40	-	-		
Mov Cap-1 Maneuver		240	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s			0			
HCM LOS	20.4 D		U			
HCWI LOS	U					
Minor Lane/Major Mvi	nt	NBT	NBRV	VBLn1		
Capacity (veh/h)		-	-	240		
HCM Lane V/C Ratio		-	-	0.303		
HCM Control Delay (s	;)	-	-	26.4		
HCM Lane LOS	,	-		D		
HCM 95th %tile Q(vel	1)	-	_	1.2		
John John Q(VCI	'/			1.2		

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Build Timing Plan: PM

	•	→	\rightarrow	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተተ _ጉ		ሻ	1		ሻ	4	
Traffic Volume (vph)	100	1717	18	43	1572	48	169	3	49	82	1	176
Future Volume (vph)	100	1717	18	43	1572	48	169	3	49	82	1	176
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	109	1866	20	47	1709	52	184	3	53	89	1	191
Shared Lane Traffic (%)												
Lane Group Flow (vph)	109	1886	0	47	1761	0	184	56	0	89	192	0
Turn Type	pm+pt	NA		pm+pt	NA		Split	NA		Split	NA	
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	20.0	63.0		20.0	63.0		29.2	29.2		27.8	27.8	
Total Split (%)	14.3%	45.0%		14.3%	45.0%		20.9%	20.9%		19.9%	19.9%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	None		None	None		None	None		Max	Max	
Act Effct Green (s)	67.4	59.4		61.0	54.0		18.0	18.0		23.6	23.6	
Actuated g/C Ratio	0.54	0.48		0.49	0.44		0.15	0.15		0.19	0.19	
v/c Ratio	0.55	0.77		0.30	0.80		0.72	0.20		0.26	0.42	
Control Delay	29.7	30.3		18.7	33.9		67.8	15.5		49.2	9.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	29.7	30.3		18.7	33.9		67.8	15.5		49.2	9.8	
LOS	С	С		В	С		Е	В		D	Α	
Approach Delay		30.3			33.5			55.6			22.3	
Approach LOS		С			С			Е			С	
Queue Length 50th (ft)	40	463		17	431		147	2		64	1	
Queue Length 95th (ft)	100	589		38	578		237	42		126	70	
Internal Link Dist (ft)		431			420			314			314	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	277	2520		281	2427		357	365		337	456	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.39	0.75		0.17	0.73		0.52	0.15		0.26	0.42	
latara atian Occasion												

ntersection Summa

Cycle Length: 140
Actuated Cycle Length: 123.8
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.80
Intersection Signal Delay: 32.5

Intersection LOS: C

03/01/2022 Synchro 10 Report SMN Page 1

1: Private Driveway/Site Driveway 1 & Walnut Hill Lane 3610 - 21.560

Build Timing Plan: PM

Intersection Capacity Utilization 73.1% Analysis Period (min) 15 ICU Level of Service D

Splits and Phases: 1: Private Driveway/Site Driveway 1 & Walnut Hill Lane

03/01/2022 Synchro 10 Report SMN Page 2

Intersection Int Delay, s/veh								
	9.9							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	^ ^	ተ ቀሴ		ች	1		
Traffic Vol, veh/h	42	1813	1551	70	51	97		
Future Vol. veh/h	42	1813	1551	70	51	97		
Conflicting Peds. #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	150	-	-	-	0	0		
Veh in Median Storage	e,# -	0	0	-	0	-		
Grade, %	-	0	0	-	0	-		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	46	1971	1686	76	55	105		
Major/Minor	Major1		Major2		Minor2			
Conflicting Flow All	1762	0	-	0		881		
Stage 1	-	-	-	-	1724	-		
Stage 2	-		-	-	880	-		
Critical Hdwy	5.34	-	-	-	5.74	7.14		
Critical Hdwy Stg 1	-		-	-	6.64	-		
Critical Hdwy Stg 2	-	-	-	-	6.04	-		
Follow-up Hdwy	3.12	-	-	-	3.82	3.92		
Pot Cap-1 Maneuver	165	-	-	-	~ 44	249		
Stage 1	-	-	-	-	85	-		
Stage 2	-	-	-	-	331	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	165	-	-	-	~ 32	249		
Mov Cap-2 Maneuver	-	-	-	-	~ 32	-		
Stage 1	-	-	-	-	61	-		
Stage 2	-	-	-	-	331	-		
Approach	EB		WB		SB			
HCM Control Delay, s	0.8		0		233.5			
HCM LOS					F			
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1	SBLn2	
Capacity (veh/h)		165	-	-	-	32	249	
HCM Lane V/C Ratio		0.277	-	-	-	1.732	0.423	
HCM Control Delay (s)		35	-	-		621.2	29.7	
HCM Lane LOS		D	-	-	-	F	D	
HCM 95th %tile Q(veh))	1.1	-	-	-	6.3	2	
Notes								
10103				eeds 30			outation Not Defined	*: All major volume in platoor

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ተተተ	ተ ተጮ		¥	
Traffic Vol, veh/h	69	1889	1482	12	0	163
Future Vol, veh/h	69	1889	1482	12	0	163
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	Yield	-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	75	2053	1611	13	0	177
Major/Minor I	Major1		Major2		Minor2	
Conflicting Flow All	1611	0	-	0	2589	812
Stage 1	1011	-	-	-	1618	012
Stage 2					971	
Critical Hdwy	5.34	-	-	-	5.74	7.14
Critical Hdwy Stg 1	5.34				6.64	7.14
	-	-	-	-	6.04	-
Critical Hdwy Stg 2	3.12				3.82	3.92
Follow-up Hdwy	196	-	-	-		
Pot Cap-1 Maneuver		_		-	45	276
Stage 1	-	-	-	-	100 296	-
Stage 2	-	-	-	-	290	-
Platoon blocked, %	400	-	-	-	00	070
Mov Cap-1 Maneuver	196	-	-	-	28	276
Mov Cap-2 Maneuver	-	-	-	-	28	-
Stage 1	-	-	-	-	62	-
Stage 2	-	-	-	-	296	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.2		0		38.8	
HCM LOS	1.2		U		E	
TIOM EGG						
Minor Lane/Major Mvm	t	EBL	EBT	WBT		SBLn1
Capacity (veh/h)		196	-	-	-	276
HCM Lane V/C Ratio		0.383	-	-	-	0.642
HCM Control Delay (s)		34.3	-	-	-	38.8
HCM Lane LOS		D	-	-	-	Е
HCM 95th %tile Q(veh)		1.7	-	-	-	4

Intersection		_	_			
Int Delay, s/veh	1.2					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ની	4	
Traffic Vol, veh/h	9	17	6	68	134	5
Future Vol, veh/h	9	17	6	68	134	5
Conflicting Peds, #/hr	0	0	_ 0	0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	18	7	74	146	5
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	237	149	151	0	-	0
Stage 1	149	-	-	-	-	-
Stage 2	88	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518			-	-	-
Pot Cap-1 Maneuver	751	898	1430	-	-	-
Stage 1	879	-	-	-	-	-
Stage 2	935	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	747	898	1430	-	-	-
Mov Cap-2 Maneuver	747	-	-	-	-	-
Stage 1	875	-	-	-	-	-
Stage 2	935	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		0.6		0.00	
HCM LOS	Α.		0.0			
TIOM LOO	^					
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT SBR	
Capacity (veh/h)		1430	-	839		
HCM Lane V/C Ratio		0.005		0.034		
HCM Control Delay (s))	7.5	0	9.4		
HCM Lane LOS		Α	Α	Α		
HCM 95th %tile Q(veh	1)	0	-	0.1		

Intersection						
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	TIDL	7	^	HUIT	ODL	ODI
Traffic Vol, veh/h	0	74	842	24	0	0
Future Vol. veh/h	0	74	842	24	0	0
Conflicting Peds, #/hr	0	0	042	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	Stop -	None	riee -	None	Stop -	
Storage Length		0		None -		None
		-	0	-		0
Veh in Median Storage					-	
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	80	915	26	0	0
Major/Minor	Minor1		Major1			
Conflicting Flow All	-	471	0	0		
Stage 1	-		-	-		
Stage 2	-			-		
Critical Hdwy	_	6.94	-	_		
Critical Hdwy Stg 1		0.04	-			
Critical Hdwy Stg 2	_	_		_		
Follow-up Hdwy		3.32	-			
Pot Cap-1 Maneuver	0	539		-		
	0	559				
Stage 1	0			-		
Stage 2	U	-	-	_		
Platoon blocked, %		500	-	-		
Mov Cap-1 Maneuver		539	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s			0			
HCM LOS	12.0 B		U			
TIOW LOS	ь					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1		
Capacity (veh/h)		-	-	539		
HCM Lane V/C Ratio		-	-	0.149		
HCM Control Delay (s)	-	-	12.8		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh	1)	-	-	0.5		
	/					

03/01/2022 SMN Synchro 10 Report Page 4

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	7102	7	† 1>	ADIN	ODL	001
Traffic Vol, veh/h	0	34	830	56	0	0
Future Vol. veh/h	0	34	830	56	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	37	902	61	0	0
Major/Minor N	/linor1		Major1			
-,	-					
Conflicting Flow All		482	0	0		
Stage 1	-	-	-	-		
Stage 2 Critical Hdwy	-	6.94	-	-		
	-	0.94	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	3.32		-		
Follow-up Hdwy Pot Cap-1 Maneuver	0	530		-		
Stage 1	0	550	-			
Stage 1	0	-	-	-		
Platoon blocked, %	U	-		-		
Mov Cap-1 Maneuver	_	530				
		550	-			
Mov Cap-2 Maneuver	-		-			
Stage 1		-	_	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s	12.3		0			
HCM LOS	В					
Minor Lang/Major Mumi		NBT	NIDDU	VDI n1		
Minor Lane/Major Mvmt				VBLn1 530		
Capacity (veh/h)		-	-			
HCM Lane V/C Ratio HCM Control Delay (s)		-	-	0.07		
DUJVI LANTINI DEIAV (S)		-	-			
, , ,				ъ.		
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	0.2		

Intersection						
Int Delay, s/veh	3.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	ተ ተጉ			
Traffic Vol, veh/h	0	109	1951	148	0	0
Future Vol, veh/h	0	109	1951	148	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	-	0			0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	118	2121	161	0	0
	_					-
	10. 4					
Major/Minor	Minor1		Major1			
Conflicting Flow All		1141	0	0		
Stage 1	-	-	-	-		
Stage 2	-		-	-		
Critical Hdwy	-	7.14	-	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-		
Follow-up Hdwy	-	3.92	-	-		
Pot Cap-1 Maneuver	0	167	-	-		
Stage 1	0	-	-	-		
Stage 2	0	-	-	-		
Platoon blocked, %			-	-		
Mov Cap-1 Maneuver		167	-	-		
Mov Cap-2 Maneuver	-	-	-	-		
Stage 1	-	-	-	-		
Stage 2	-	-	-	-		
Approach	WB		NB			
HCM Control Delay, s			0			
HCM LOS	F		U			
HCW LOS	г					
Minor Lane/Major Mvi	nt	NBT	NBRV	VBLn1		
Capacity (veh/h)		-	-	167		
HCM Lane V/C Ratio		-	-	0.709		
HCM Control Delay (s	i)	-	-	66.8		
HCM Lane LOS		-	-	F		
HCM 95th %tile Q(vel	۱)	-	-	4.3		
,	,					

APPENDIX E. Site Access Evaluation Supplement

All crash data available using this tool represents reportable data collected from Texas Peace Officer's Crash Reports (CR-3) received and processed by the Texas Department of Transportation (Department) as of 03/01/2022. The Department makes no warranty, representation or guaranty as to the content, accuracy, timeliness or completeness of any of the information provided as a result of your query. Any opinions and conclusions resulting from analysis performed on the crash data must be represented as your own and not those of the State of Texas or the Department.

Query Builder

Build your query using the steps below. You can View Results when all conditions shown below are satisfied.

Select Query Type

What type of Query would you like to build?

- I want to find all Crashes that meet a certain set of criteria
- O I want to find Units (ex. Vehicles, Bicycles) that were involved in crashes that meet a certain set of criteria
- O I want to find Persons that were involved in crashes that meet a certain set of criteria

Select Crash Date and Time

When did the crashes occur that you would like to find?

- O Select crashes from a specific year
- Select Crashes from a range of years
- O Select Crashes from a specific date and time range

Begin Year End Year 2019 x ▼ 2020 x ▼

Select Crash Location

When did the crash occur that you would like to find?

- O Define search by entering one or more of the most common location fields
- O Define more complex search area using Filter Builder
- Define search area using interactive map
- O Search All of Texas

Create Additional Filters

Filters can be defined using the various attributes associated with a crash, the units involved in the crash, and the persons involved in the crash. Any crash that meets all of the conditions of your filters will be returned in your Query.

Choose From TxDOT-Authored Filters

TxDOT has authored a set of Filters that you can use to narrow down the results of your Query. Check the box below to apply the Filter to your Query alongside the Filters that you have created.

Filters Authored by TxDOT				
☐ Intersection Related Crashes Q More Information				
☐ Work Zone Crashes Q More Information				
☐ Alcohol Involved Crashes Q More Information				
☐ Distracted Driving Crashes				
☐ Driving Under the Influence of Alcohol	1			
☐ Motorcycle Related Crashes Q More Information				
☐ Speed Related Crashes				
☐ Cell Phone Use Involved Crashes Q More Information				
☐ Distracted Driving Vehicles				
□ Counts of Motorcycles Q More Information				
☐ Motorcyclists Q More Information				
☐ Driving Under the Influence of Alcohol or Drugs Q More	Information			
☐ Driving Under the Influence of Drugs Q More Information				
☐ Driving While Intoxicated Q More Information				
□ Drug Involved Crashes Q More Information				
Switch To Wizard View		View Results	Save	Start Over
Re	sults can be viewed when:		0 Cr	ashes

Date and Time has been specified

Crash Location has been specified

Match Count is between 1 and 50,000 Crashes (3)

Match your Query

All crash data available using this tool represents reportable data collected from Texas Peace Officer's Crash Reports (CR-3) received and processed by the Texas Department of Transportation (Department) as of 03/01/2022. The Department makes no warranty, representation or guaranty as to the content, accuracy, timeliness or completeness of any of the information provided as a result of your query. Any opinions and conclusions resulting from analysis performed on the crash data must be represented as your own and not those of the State of Texas or the Department.

Query Builder

Build your query using the steps below. You can View Results when all conditions shown below are satisfied.

Select Query Type

What type of Query would you like to build?

- I want to find all Crashes that meet a certain set of criteria
- O I want to find Units (ex. Vehicles, Bicycles) that were involved in crashes that meet a certain set of criteria
- O I want to find Persons that were involved in crashes that meet a certain set of criteria

Select Crash Date and Time

When did the crashes occur that you would like to find?

- O Select crashes from a specific year
- Select Crashes from a range of years
- O Select Crashes from a specific date and time range

Begin Year End Year 2019 × ▼ 2020 × ▼

Select Crash Location

When did the crash occur that you would like to find?

- O Define search by entering one or more of the most common location fields
- O Define more complex search area using Filter Builder
- Define search area using interactive map
- O Search All of Texas

Create Additional Filters

Filters can be defined using the various attributes associated with a crash, the units involved in the crash, and the persons involved in the crash. Any crash that meets all of the conditions of your filters will be returned in your Query.

Choose From TxDOT-Authored Filters

TxDOT has authored a set of Filters that you can use to narrow down the results of your Query. Check the box below to apply the Filter to your Query alongside the Filters that you have created.

Filters Authored by TxDOT				
☐ Intersection Related Crashes Q More Information				
☐ Work Zone Crashes Q More Information				
☐ Alcohol Involved Crashes Q More Information				
☐ Distracted Driving Crashes				
☐ Driving Under the Influence of Alcohol	1			
☐ Motorcycle Related Crashes Q More Information				
☐ Speed Related Crashes				
☐ Cell Phone Use Involved Crashes Q More Information				
☐ Distracted Driving Vehicles				
□ Counts of Motorcycles Q More Information				
☐ Motorcyclists Q More Information				
☐ Driving Under the Influence of Alcohol or Drugs Q More	Information			
☐ Driving Under the Influence of Drugs Q More Information				
☐ Driving While Intoxicated Q More Information				
□ Drug Involved Crashes Q More Information				
Switch To Wizard View		View Results	Save	Start Over
Re	sults can be viewed when:		0 Cr	ashes

Date and Time has been specified

Crash Location has been specified

Match Count is between 1 and 50,000 Crashes (3)

Match your Query

Query Builder

Build your query using the steps below. You can View Results when all conditions shown below are satisfied.

Select Query Type

What type of Query would you like to build?

- I want to find all Crashes that meet a certain set of criteria
- O I want to find Units (ex. Vehicles, Bicycles) that were involved in crashes that meet a certain set of criteria
- O I want to find Persons that were involved in crashes that meet a certain set of criteria

Select Crash Date and Time

When did the crashes occur that you would like to find?

- O Select crashes from a specific year
- Select Crashes from a range of years
- Select Crashes from a specific date and time range

Begin Year End Year 2019 × ▼ 2020 × ▼

Select Crash Location

When did the crash occur that you would like to find?

- O Define search by entering one or more of the most common location fields
- O Define more complex search area using Filter Builder
- Define search area using interactive map
- O Search All of Texas

Create Additional Filters

Filters can be defined using the various attributes associated with a crash, the units involved in the crash, and the persons involved in the crash. Any crash that meets all of the conditions of your filters will be returned in your Query.

Choose From TxDOT-Authored Filters

TxDOT has authored a set of Filters that you can use to narrow down the results of your Query. Check the box below to apply the Filter to your Query alongside the Filters that you have created.

Filters Authored by TxDOT
☐ Intersection Related Crashes
☐ Work Zone Crashes Q More Information
☐ Alcohol Involved Crashes Q More Information
☐ Distracted Driving Crashes
☐ Driving Under the Influence of Alcohol
☐ Motorcycle Related Crashes Q More Information
☐ Speed Related Crashes Q More Information
☐ Cell Phone Use Involved Crashes Q More Information
☐ Distracted Driving Vehicles
□ Counts of Motorcycles Q More Information
☐ Motorcyclists
☐ Driving Under the Influence of Alcohol or Drugs Q More Information
☐ Driving Under the Influence of Drugs
☐ Driving While Intoxicated Q More Information
□ Drug Involved Crashes Q More Information
Switch To Wizard View Save Start Over

Results can be viewed when:

0 Crashes

Date and Time has been specified

Crash Location has been specified

Match Count is between 1 and 50,000 Crashes (3)

Match your Query